replicant-frameworks_native/libs/gui/tests/CpuConsumer_test.cpp

757 lines
25 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "CpuConsumer_test"
//#define LOG_NDEBUG 0
//#define LOG_NNDEBUG 0
#ifdef LOG_NNDEBUG
#define ALOGVV(...) ALOGV(__VA_ARGS__)
#else
#define ALOGVV(...) ((void)0)
#endif
#include <gtest/gtest.h>
#include <gui/CpuConsumer.h>
#include <gui/Surface.h>
#include <ui/GraphicBuffer.h>
#include <utils/String8.h>
#include <utils/Thread.h>
#include <utils/Mutex.h>
#include <utils/Condition.h>
#define CPU_CONSUMER_TEST_FORMAT_RAW 0
#define CPU_CONSUMER_TEST_FORMAT_Y8 0
#define CPU_CONSUMER_TEST_FORMAT_Y16 0
#define CPU_CONSUMER_TEST_FORMAT_RGBA_8888 1
namespace android {
struct CpuConsumerTestParams {
uint32_t width;
uint32_t height;
int maxLockedBuffers;
PixelFormat format;
};
::std::ostream& operator<<(::std::ostream& os, const CpuConsumerTestParams& p) {
return os << "[ (" << p.width << ", " << p.height << "), B:"
<< p.maxLockedBuffers << ", F:0x"
<< ::std::hex << p.format << "]";
}
class CpuConsumerTest : public ::testing::TestWithParam<CpuConsumerTestParams> {
protected:
virtual void SetUp() {
const ::testing::TestInfo* const test_info =
::testing::UnitTest::GetInstance()->current_test_info();
CpuConsumerTestParams params = GetParam();
ALOGV("** Starting test %s (%d x %d, %d, 0x%x)",
test_info->name(),
params.width, params.height,
params.maxLockedBuffers, params.format);
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer);
mCC = new CpuConsumer(consumer, params.maxLockedBuffers);
String8 name("CpuConsumer_Under_Test");
mCC->setName(name);
mSTC = new Surface(producer);
mANW = mSTC;
}
virtual void TearDown() {
mANW.clear();
mSTC.clear();
mCC.clear();
}
class FrameWaiter : public CpuConsumer::FrameAvailableListener {
public:
FrameWaiter():
mPendingFrames(0) {
}
void waitForFrame() {
Mutex::Autolock lock(mMutex);
while (mPendingFrames == 0) {
mCondition.wait(mMutex);
}
mPendingFrames--;
}
virtual void onFrameAvailable() {
Mutex::Autolock lock(mMutex);
mPendingFrames++;
mCondition.signal();
}
int mPendingFrames;
Mutex mMutex;
Condition mCondition;
};
// Note that SurfaceTexture will lose the notifications
// onBuffersReleased and onFrameAvailable as there is currently
// no way to forward the events. This DisconnectWaiter will not let the
// disconnect finish until finishDisconnect() is called. It will
// also block until a disconnect is called
class DisconnectWaiter : public BufferQueue::ConsumerListener {
public:
DisconnectWaiter () :
mWaitForDisconnect(false),
mPendingFrames(0) {
}
void waitForFrame() {
Mutex::Autolock lock(mMutex);
while (mPendingFrames == 0) {
mFrameCondition.wait(mMutex);
}
mPendingFrames--;
}
virtual void onFrameAvailable() {
Mutex::Autolock lock(mMutex);
mPendingFrames++;
mFrameCondition.signal();
}
virtual void onBuffersReleased() {
Mutex::Autolock lock(mMutex);
while (!mWaitForDisconnect) {
mDisconnectCondition.wait(mMutex);
}
}
void finishDisconnect() {
Mutex::Autolock lock(mMutex);
mWaitForDisconnect = true;
mDisconnectCondition.signal();
}
private:
Mutex mMutex;
bool mWaitForDisconnect;
Condition mDisconnectCondition;
int mPendingFrames;
Condition mFrameCondition;
};
sp<CpuConsumer> mCC;
sp<Surface> mSTC;
sp<ANativeWindow> mANW;
};
#define ASSERT_NO_ERROR(err, msg) \
ASSERT_EQ(NO_ERROR, err) << msg << strerror(-err)
void checkPixel(const CpuConsumer::LockedBuffer &buf,
uint32_t x, uint32_t y, uint32_t r, uint32_t g=0, uint32_t b=0) {
// Ignores components that don't exist for given pixel
switch(buf.format) {
case HAL_PIXEL_FORMAT_RAW_SENSOR: {
String8 msg;
uint16_t *bPtr = (uint16_t*)buf.data;
bPtr += y * buf.stride + x;
// GRBG Bayer mosaic; only check the matching channel
switch( ((y & 1) << 1) | (x & 1) ) {
case 0: // G
case 3: // G
EXPECT_EQ(g, *bPtr);
break;
case 1: // R
EXPECT_EQ(r, *bPtr);
break;
case 2: // B
EXPECT_EQ(b, *bPtr);
break;
}
break;
}
// ignores g,b
case HAL_PIXEL_FORMAT_Y8: {
uint8_t *bPtr = (uint8_t*)buf.data;
bPtr += y * buf.stride + x;
EXPECT_EQ(r, *bPtr) << "at x = " << x << " y = " << y;
break;
}
// ignores g,b
case HAL_PIXEL_FORMAT_Y16: {
// stride is in pixels, not in bytes
uint16_t *bPtr = ((uint16_t*)buf.data) + y * buf.stride + x;
EXPECT_EQ(r, *bPtr) << "at x = " << x << " y = " << y;
break;
}
case HAL_PIXEL_FORMAT_RGBA_8888: {
const int bytesPerPixel = 4;
uint8_t *bPtr = (uint8_t*)buf.data;
bPtr += (y * buf.stride + x) * bytesPerPixel;
EXPECT_EQ(r, bPtr[0]) << "at x = " << x << " y = " << y;
EXPECT_EQ(g, bPtr[1]) << "at x = " << x << " y = " << y;
EXPECT_EQ(b, bPtr[2]) << "at x = " << x << " y = " << y;
break;
}
default: {
ADD_FAILURE() << "Unknown format for check:" << buf.format;
break;
}
}
}
// Fill a YV12 buffer with a multi-colored checkerboard pattern
void fillYV12Buffer(uint8_t* buf, int w, int h, int stride);
// Fill a Y8/Y16 buffer with a multi-colored checkerboard pattern
template <typename T> // T == uint8_t or uint16_t
void fillGreyscaleBuffer(T* buf, int w, int h, int stride, int bpp) {
const int blockWidth = w > 16 ? w / 16 : 1;
const int blockHeight = h > 16 ? h / 16 : 1;
const int yuvTexOffsetY = 0;
ASSERT_TRUE(bpp == 8 || bpp == 16);
ASSERT_TRUE(sizeof(T)*8 == bpp);
// stride is in pixels, not in bytes
int yuvTexStrideY = stride;
for (int x = 0; x < w; x++) {
for (int y = 0; y < h; y++) {
int parityX = (x / blockWidth) & 1;
int parityY = (y / blockHeight) & 1;
T intensity = (parityX ^ parityY) ? 63 : 191;
buf[yuvTexOffsetY + (y * yuvTexStrideY) + x] = intensity;
}
}
}
inline uint8_t chooseColorRgba8888(int blockX, int blockY, uint8_t channel) {
const int colorVariations = 3;
uint8_t color = ((blockX % colorVariations) + (blockY % colorVariations))
% (colorVariations) == channel ? 191: 63;
return color;
}
// Fill a RGBA8888 buffer with a multi-colored checkerboard pattern
void fillRgba8888Buffer(uint8_t* buf, int w, int h, int stride)
{
const int blockWidth = w > 16 ? w / 16 : 1;
const int blockHeight = h > 16 ? h / 16 : 1;
const int bytesPerPixel = 4;
// stride is in pixels, not in bytes
for (int x = 0; x < w; ++x) {
for (int y = 0; y < h; ++y) {
int blockX = (x / blockWidth);
int blockY = (y / blockHeight);
uint8_t r = chooseColorRgba8888(blockX, blockY, 0);
uint8_t g = chooseColorRgba8888(blockX, blockY, 1);
uint8_t b = chooseColorRgba8888(blockX, blockY, 2);
buf[(y*stride + x)*bytesPerPixel + 0] = r;
buf[(y*stride + x)*bytesPerPixel + 1] = g;
buf[(y*stride + x)*bytesPerPixel + 2] = b;
buf[(y*stride + x)*bytesPerPixel + 3] = 255;
}
}
}
// Fill a RAW sensor buffer with a multi-colored checkerboard pattern.
// Assumes GRBG mosaic ordering. Result should be a grid in a 2x2 pattern
// of [ R, B; G, W]
void fillBayerRawBuffer(uint8_t* buf, int w, int h, int stride) {
ALOGVV("fillBayerRawBuffer: %p with %d x %d, stride %d", buf, w, h ,stride);
// Blocks need to be even-width/height, aim for 8-wide otherwise
const int blockWidth = (w > 16 ? w / 8 : 2) & ~0x1;
const int blockHeight = (h > 16 ? h / 8 : 2) & ~0x1;
for (int y = 0; y < h; y+=2) {
uint16_t *bPtr1 = ((uint16_t*)buf) + stride*y;
uint16_t *bPtr2 = bPtr1 + stride;
for (int x = 0; x < w; x+=2) {
int blockX = (x / blockWidth ) & 1;
int blockY = (y / blockHeight) & 1;
unsigned short r = (blockX == blockY) ? 1000 : 200;
unsigned short g = blockY ? 1000: 200;
unsigned short b = blockX ? 1000: 200;
// GR row
*bPtr1++ = g;
*bPtr1++ = r;
// BG row
*bPtr2++ = b;
*bPtr2++ = g;
}
}
}
template<typename T> // uint8_t or uint16_t
void checkGreyscaleBuffer(const CpuConsumer::LockedBuffer &buf) {
uint32_t w = buf.width;
uint32_t h = buf.height;
const int blockWidth = w > 16 ? w / 16 : 1;
const int blockHeight = h > 16 ? h / 16 : 1;
const int blockRows = h / blockHeight;
const int blockCols = w / blockWidth;
// Top-left square is bright
checkPixel(buf, 0, 0, 191);
checkPixel(buf, 1, 0, 191);
checkPixel(buf, 0, 1, 191);
checkPixel(buf, 1, 1, 191);
// One-right square is dark
checkPixel(buf, blockWidth, 0, 63);
checkPixel(buf, blockWidth + 1, 0, 63);
checkPixel(buf, blockWidth, 1, 63);
checkPixel(buf, blockWidth + 1, 1, 63);
// One-down square is dark
checkPixel(buf, 0, blockHeight, 63);
checkPixel(buf, 1, blockHeight, 63);
checkPixel(buf, 0, blockHeight + 1, 63);
checkPixel(buf, 1, blockHeight + 1, 63);
// One-diag square is bright
checkPixel(buf, blockWidth, blockHeight, 191);
checkPixel(buf, blockWidth + 1, blockHeight, 191);
checkPixel(buf, blockWidth, blockHeight + 1, 191);
checkPixel(buf, blockWidth + 1, blockHeight + 1, 191);
// Test bottom-right pixel
const int maxBlockX = ((w-1 + (blockWidth-1)) / blockWidth) & 0x1;
const int maxBlockY = ((h-1 + (blockHeight-1)) / blockHeight) & 0x1;
uint32_t pixelValue = ((maxBlockX % 2) == (maxBlockY % 2)) ? 191 : 63;
checkPixel(buf, w-1, h-1, pixelValue);
}
void checkRgba8888Buffer(const CpuConsumer::LockedBuffer &buf) {
uint32_t w = buf.width;
uint32_t h = buf.height;
const int blockWidth = w > 16 ? w / 16 : 1;
const int blockHeight = h > 16 ? h / 16 : 1;
const int blockRows = h / blockHeight;
const int blockCols = w / blockWidth;
// Top-left square is bright red
checkPixel(buf, 0, 0, 191, 63, 63);
checkPixel(buf, 1, 0, 191, 63, 63);
checkPixel(buf, 0, 1, 191, 63, 63);
checkPixel(buf, 1, 1, 191, 63, 63);
// One-right square is bright green
checkPixel(buf, blockWidth, 0, 63, 191, 63);
checkPixel(buf, blockWidth + 1, 0, 63, 191, 63);
checkPixel(buf, blockWidth, 1, 63, 191, 63);
checkPixel(buf, blockWidth + 1, 1, 63, 191, 63);
// One-down square is bright green
checkPixel(buf, 0, blockHeight, 63, 191, 63);
checkPixel(buf, 1, blockHeight, 63, 191, 63);
checkPixel(buf, 0, blockHeight + 1, 63, 191, 63);
checkPixel(buf, 1, blockHeight + 1, 63, 191, 63);
// One-diag square is bright blue
checkPixel(buf, blockWidth, blockHeight, 63, 63, 191);
checkPixel(buf, blockWidth + 1, blockHeight, 63, 63, 191);
checkPixel(buf, blockWidth, blockHeight + 1, 63, 63, 191);
checkPixel(buf, blockWidth + 1, blockHeight + 1, 63, 63, 191);
// Test bottom-right pixel
{
const int maxBlockX = ((w-1) / blockWidth);
const int maxBlockY = ((h-1) / blockHeight);
uint8_t r = chooseColorRgba8888(maxBlockX, maxBlockY, 0);
uint8_t g = chooseColorRgba8888(maxBlockX, maxBlockY, 1);
uint8_t b = chooseColorRgba8888(maxBlockX, maxBlockY, 2);
checkPixel(buf, w-1, h-1, r, g, b);
}
}
void checkBayerRawBuffer(const CpuConsumer::LockedBuffer &buf) {
uint32_t w = buf.width;
uint32_t h = buf.height;
const int blockWidth = (w > 16 ? w / 8 : 2) & ~0x1;
const int blockHeight = (h > 16 ? h / 8 : 2) & ~0x1;
const int blockRows = h / blockHeight;
const int blockCols = w / blockWidth;
// Top-left square is red
checkPixel(buf, 0, 0, 1000, 200, 200);
checkPixel(buf, 1, 0, 1000, 200, 200);
checkPixel(buf, 0, 1, 1000, 200, 200);
checkPixel(buf, 1, 1, 1000, 200, 200);
// One-right square is blue
checkPixel(buf, blockWidth, 0, 200, 200, 1000);
checkPixel(buf, blockWidth + 1, 0, 200, 200, 1000);
checkPixel(buf, blockWidth, 1, 200, 200, 1000);
checkPixel(buf, blockWidth + 1, 1, 200, 200, 1000);
// One-down square is green
checkPixel(buf, 0, blockHeight, 200, 1000, 200);
checkPixel(buf, 1, blockHeight, 200, 1000, 200);
checkPixel(buf, 0, blockHeight + 1, 200, 1000, 200);
checkPixel(buf, 1, blockHeight + 1, 200, 1000, 200);
// One-diag square is white
checkPixel(buf, blockWidth, blockHeight, 1000, 1000, 1000);
checkPixel(buf, blockWidth + 1, blockHeight, 1000, 1000, 1000);
checkPixel(buf, blockWidth, blockHeight + 1, 1000, 1000, 1000);
checkPixel(buf, blockWidth + 1, blockHeight + 1, 1000, 1000, 1000);
// Test bottom-right pixel
const int maxBlockX = ((w-1) / blockWidth) & 0x1;
const int maxBlockY = ((w-1) / blockHeight) & 0x1;
unsigned short maxR = (maxBlockX == maxBlockY) ? 1000 : 200;
unsigned short maxG = maxBlockY ? 1000: 200;
unsigned short maxB = maxBlockX ? 1000: 200;
checkPixel(buf, w-1, h-1, maxR, maxG, maxB);
}
void checkAnyBuffer(const CpuConsumer::LockedBuffer &buf, int format) {
switch (format) {
case HAL_PIXEL_FORMAT_RAW_SENSOR:
checkBayerRawBuffer(buf);
break;
case HAL_PIXEL_FORMAT_Y8:
checkGreyscaleBuffer<uint8_t>(buf);
break;
case HAL_PIXEL_FORMAT_Y16:
checkGreyscaleBuffer<uint16_t>(buf);
break;
case HAL_PIXEL_FORMAT_RGBA_8888:
checkRgba8888Buffer(buf);
break;
}
}
void fillYV12BufferRect(uint8_t* buf, int w, int h, int stride,
const android_native_rect_t& rect);
void fillRGBA8Buffer(uint8_t* buf, int w, int h, int stride);
void fillRGBA8BufferSolid(uint8_t* buf, int w, int h, int stride, uint8_t r,
uint8_t g, uint8_t b, uint8_t a);
// Configures the ANativeWindow producer-side interface based on test parameters
void configureANW(const sp<ANativeWindow>& anw,
const CpuConsumerTestParams& params,
int maxBufferSlack) {
status_t err;
err = native_window_set_buffers_geometry(anw.get(),
params.width, params.height, params.format);
ASSERT_NO_ERROR(err, "set_buffers_geometry error: ");
err = native_window_set_usage(anw.get(),
GRALLOC_USAGE_SW_WRITE_OFTEN);
ASSERT_NO_ERROR(err, "set_usage error: ");
int minUndequeuedBuffers;
err = anw.get()->query(anw.get(),
NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS,
&minUndequeuedBuffers);
ASSERT_NO_ERROR(err, "query error: ");
ALOGVV("Setting buffer count to %d",
maxBufferSlack + 1 + minUndequeuedBuffers);
err = native_window_set_buffer_count(anw.get(),
maxBufferSlack + 1 + minUndequeuedBuffers);
ASSERT_NO_ERROR(err, "set_buffer_count error: ");
}
// Produce one frame of image data; assumes format and resolution configuration
// is already done.
void produceOneFrame(const sp<ANativeWindow>& anw,
const CpuConsumerTestParams& params,
int64_t timestamp, uint32_t *stride) {
status_t err;
ANativeWindowBuffer* anb;
ALOGVV("Dequeue buffer from %p", anw.get());
err = native_window_dequeue_buffer_and_wait(anw.get(), &anb);
ASSERT_NO_ERROR(err, "dequeueBuffer error: ");
ASSERT_TRUE(anb != NULL);
sp<GraphicBuffer> buf(new GraphicBuffer(anb, false));
*stride = buf->getStride();
uint8_t* img = NULL;
ALOGVV("Lock buffer from %p for write", anw.get());
err = buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img));
ASSERT_NO_ERROR(err, "lock error: ");
switch (params.format) {
case HAL_PIXEL_FORMAT_YV12:
fillYV12Buffer(img, params.width, params.height, *stride);
break;
case HAL_PIXEL_FORMAT_RAW_SENSOR:
fillBayerRawBuffer(img, params.width, params.height, buf->getStride());
break;
case HAL_PIXEL_FORMAT_Y8:
fillGreyscaleBuffer<uint8_t>(img, params.width, params.height,
buf->getStride(), /*bpp*/8);
break;
case HAL_PIXEL_FORMAT_Y16:
fillGreyscaleBuffer<uint16_t>((uint16_t*)img, params.width,
params.height, buf->getStride(),
/*bpp*/16);
break;
case HAL_PIXEL_FORMAT_RGBA_8888:
fillRgba8888Buffer(img, params.width, params.height, buf->getStride());
break;
default:
FAIL() << "Unknown pixel format under test!";
break;
}
ALOGVV("Unlock buffer from %p", anw.get());
err = buf->unlock();
ASSERT_NO_ERROR(err, "unlock error: ");
ALOGVV("Set timestamp to %p", anw.get());
err = native_window_set_buffers_timestamp(anw.get(), timestamp);
ASSERT_NO_ERROR(err, "set_buffers_timestamp error: ");
ALOGVV("Queue buffer to %p", anw.get());
err = anw->queueBuffer(anw.get(), buf->getNativeBuffer(), -1);
ASSERT_NO_ERROR(err, "queueBuffer error:");
};
// This test is disabled because the HAL_PIXEL_FORMAT_RAW_SENSOR format is not
// supported on all devices.
TEST_P(CpuConsumerTest, FromCpuSingle) {
status_t err;
CpuConsumerTestParams params = GetParam();
// Set up
ASSERT_NO_FATAL_FAILURE(configureANW(mANW, params, 1));
// Produce
const int64_t time = 12345678L;
uint32_t stride;
ASSERT_NO_FATAL_FAILURE(produceOneFrame(mANW, params, time,
&stride));
// Consume
CpuConsumer::LockedBuffer b;
err = mCC->lockNextBuffer(&b);
ASSERT_NO_ERROR(err, "getNextBuffer error: ");
ASSERT_TRUE(b.data != NULL);
EXPECT_EQ(params.width, b.width);
EXPECT_EQ(params.height, b.height);
EXPECT_EQ(params.format, b.format);
EXPECT_EQ(stride, b.stride);
EXPECT_EQ(time, b.timestamp);
checkAnyBuffer(b, GetParam().format);
mCC->unlockBuffer(b);
}
// This test is disabled because the HAL_PIXEL_FORMAT_RAW_SENSOR format is not
// supported on all devices.
TEST_P(CpuConsumerTest, FromCpuManyInQueue) {
status_t err;
CpuConsumerTestParams params = GetParam();
const int numInQueue = 5;
// Set up
ASSERT_NO_FATAL_FAILURE(configureANW(mANW, params, numInQueue));
// Produce
const int64_t time[numInQueue] = { 1L, 2L, 3L, 4L, 5L};
uint32_t stride[numInQueue];
for (int i = 0; i < numInQueue; i++) {
ALOGV("Producing frame %d", i);
ASSERT_NO_FATAL_FAILURE(produceOneFrame(mANW, params, time[i],
&stride[i]));
}
// Consume
for (int i = 0; i < numInQueue; i++) {
ALOGV("Consuming frame %d", i);
CpuConsumer::LockedBuffer b;
err = mCC->lockNextBuffer(&b);
ASSERT_NO_ERROR(err, "getNextBuffer error: ");
ASSERT_TRUE(b.data != NULL);
EXPECT_EQ(params.width, b.width);
EXPECT_EQ(params.height, b.height);
EXPECT_EQ(params.format, b.format);
EXPECT_EQ(stride[i], b.stride);
EXPECT_EQ(time[i], b.timestamp);
checkAnyBuffer(b, GetParam().format);
mCC->unlockBuffer(b);
}
}
// This test is disabled because the HAL_PIXEL_FORMAT_RAW_SENSOR format is not
// supported on all devices.
TEST_P(CpuConsumerTest, FromCpuLockMax) {
status_t err;
CpuConsumerTestParams params = GetParam();
// Set up
ASSERT_NO_FATAL_FAILURE(configureANW(mANW, params, params.maxLockedBuffers + 1));
// Produce
const int64_t time = 1234L;
uint32_t stride;
for (int i = 0; i < params.maxLockedBuffers + 1; i++) {
ALOGV("Producing frame %d", i);
ASSERT_NO_FATAL_FAILURE(produceOneFrame(mANW, params, time,
&stride));
}
// Consume
CpuConsumer::LockedBuffer *b = new CpuConsumer::LockedBuffer[params.maxLockedBuffers];
for (int i = 0; i < params.maxLockedBuffers; i++) {
ALOGV("Locking frame %d", i);
err = mCC->lockNextBuffer(&b[i]);
ASSERT_NO_ERROR(err, "getNextBuffer error: ");
ASSERT_TRUE(b[i].data != NULL);
EXPECT_EQ(params.width, b[i].width);
EXPECT_EQ(params.height, b[i].height);
EXPECT_EQ(params.format, b[i].format);
EXPECT_EQ(stride, b[i].stride);
EXPECT_EQ(time, b[i].timestamp);
checkAnyBuffer(b[i], GetParam().format);
}
ALOGV("Locking frame %d (too many)", params.maxLockedBuffers);
CpuConsumer::LockedBuffer bTooMuch;
err = mCC->lockNextBuffer(&bTooMuch);
ASSERT_TRUE(err == NOT_ENOUGH_DATA) << "Allowing too many locks";
ALOGV("Unlocking frame 0");
err = mCC->unlockBuffer(b[0]);
ASSERT_NO_ERROR(err, "Could not unlock buffer 0: ");
ALOGV("Locking frame %d (should work now)", params.maxLockedBuffers);
err = mCC->lockNextBuffer(&bTooMuch);
ASSERT_NO_ERROR(err, "Did not allow new lock after unlock");
ASSERT_TRUE(bTooMuch.data != NULL);
EXPECT_EQ(params.width, bTooMuch.width);
EXPECT_EQ(params.height, bTooMuch.height);
EXPECT_EQ(params.format, bTooMuch.format);
EXPECT_EQ(stride, bTooMuch.stride);
EXPECT_EQ(time, bTooMuch.timestamp);
checkAnyBuffer(bTooMuch, GetParam().format);
ALOGV("Unlocking extra buffer");
err = mCC->unlockBuffer(bTooMuch);
ASSERT_NO_ERROR(err, "Could not unlock extra buffer: ");
ALOGV("Locking frame %d (no more available)", params.maxLockedBuffers + 1);
err = mCC->lockNextBuffer(&b[0]);
ASSERT_EQ(BAD_VALUE, err) << "Not out of buffers somehow";
for (int i = 1; i < params.maxLockedBuffers; i++) {
mCC->unlockBuffer(b[i]);
}
delete[] b;
}
CpuConsumerTestParams y8TestSets[] = {
{ 512, 512, 1, HAL_PIXEL_FORMAT_Y8},
{ 512, 512, 3, HAL_PIXEL_FORMAT_Y8},
{ 2608, 1960, 1, HAL_PIXEL_FORMAT_Y8},
{ 2608, 1960, 3, HAL_PIXEL_FORMAT_Y8},
{ 100, 100, 1, HAL_PIXEL_FORMAT_Y8},
{ 100, 100, 3, HAL_PIXEL_FORMAT_Y8},
};
CpuConsumerTestParams y16TestSets[] = {
{ 512, 512, 1, HAL_PIXEL_FORMAT_Y16},
{ 512, 512, 3, HAL_PIXEL_FORMAT_Y16},
{ 2608, 1960, 1, HAL_PIXEL_FORMAT_Y16},
{ 2608, 1960, 3, HAL_PIXEL_FORMAT_Y16},
{ 100, 100, 1, HAL_PIXEL_FORMAT_Y16},
{ 100, 100, 3, HAL_PIXEL_FORMAT_Y16},
};
CpuConsumerTestParams rawTestSets[] = {
{ 512, 512, 1, HAL_PIXEL_FORMAT_RAW_SENSOR},
{ 512, 512, 3, HAL_PIXEL_FORMAT_RAW_SENSOR},
{ 2608, 1960, 1, HAL_PIXEL_FORMAT_RAW_SENSOR},
{ 2608, 1960, 3, HAL_PIXEL_FORMAT_RAW_SENSOR},
{ 100, 100, 1, HAL_PIXEL_FORMAT_RAW_SENSOR},
{ 100, 100, 3, HAL_PIXEL_FORMAT_RAW_SENSOR},
};
CpuConsumerTestParams rgba8888TestSets[] = {
{ 512, 512, 1, HAL_PIXEL_FORMAT_RGBA_8888},
{ 512, 512, 3, HAL_PIXEL_FORMAT_RGBA_8888},
{ 2608, 1960, 1, HAL_PIXEL_FORMAT_RGBA_8888},
{ 2608, 1960, 3, HAL_PIXEL_FORMAT_RGBA_8888},
{ 100, 100, 1, HAL_PIXEL_FORMAT_RGBA_8888},
{ 100, 100, 3, HAL_PIXEL_FORMAT_RGBA_8888},
};
#if CPU_CONSUMER_TEST_FORMAT_Y8
INSTANTIATE_TEST_CASE_P(Y8Tests,
CpuConsumerTest,
::testing::ValuesIn(y8TestSets));
#endif
#if CPU_CONSUMER_TEST_FORMAT_Y16
INSTANTIATE_TEST_CASE_P(Y16Tests,
CpuConsumerTest,
::testing::ValuesIn(y16TestSets));
#endif
#if CPU_CONSUMER_TEST_FORMAT_RAW
INSTANTIATE_TEST_CASE_P(RawTests,
CpuConsumerTest,
::testing::ValuesIn(rawTestSets));
#endif
#if CPU_CONSUMER_TEST_FORMAT_RGBA_8888
INSTANTIATE_TEST_CASE_P(Rgba8888Tests,
CpuConsumerTest,
::testing::ValuesIn(rgba8888TestSets));
#endif
} // namespace android