replicant-frameworks_native/libs/input/Input.cpp

591 lines
18 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Input"
//#define LOG_NDEBUG 0
#include <math.h>
#include <limits.h>
#include <input/Input.h>
#include <input/InputEventLabels.h>
#ifdef HAVE_ANDROID_OS
#include <binder/Parcel.h>
#endif
namespace android {
// --- InputEvent ---
void InputEvent::initialize(int32_t deviceId, int32_t source) {
mDeviceId = deviceId;
mSource = source;
}
void InputEvent::initialize(const InputEvent& from) {
mDeviceId = from.mDeviceId;
mSource = from.mSource;
}
// --- KeyEvent ---
const char* KeyEvent::getLabel(int32_t keyCode) {
return getLabelByKeyCode(keyCode);
}
int32_t KeyEvent::getKeyCodeFromLabel(const char* label) {
return getKeyCodeByLabel(label);
}
void KeyEvent::initialize(
int32_t deviceId,
int32_t source,
int32_t action,
int32_t flags,
int32_t keyCode,
int32_t scanCode,
int32_t metaState,
int32_t repeatCount,
nsecs_t downTime,
nsecs_t eventTime) {
InputEvent::initialize(deviceId, source);
mAction = action;
mFlags = flags;
mKeyCode = keyCode;
mScanCode = scanCode;
mMetaState = metaState;
mRepeatCount = repeatCount;
mDownTime = downTime;
mEventTime = eventTime;
}
void KeyEvent::initialize(const KeyEvent& from) {
InputEvent::initialize(from);
mAction = from.mAction;
mFlags = from.mFlags;
mKeyCode = from.mKeyCode;
mScanCode = from.mScanCode;
mMetaState = from.mMetaState;
mRepeatCount = from.mRepeatCount;
mDownTime = from.mDownTime;
mEventTime = from.mEventTime;
}
// --- PointerCoords ---
float PointerCoords::getAxisValue(int32_t axis) const {
if (axis < 0 || axis > 63 || !BitSet64::hasBit(bits, axis)){
return 0;
}
return values[BitSet64::getIndexOfBit(bits, axis)];
}
status_t PointerCoords::setAxisValue(int32_t axis, float value) {
if (axis < 0 || axis > 63) {
return NAME_NOT_FOUND;
}
uint32_t index = BitSet64::getIndexOfBit(bits, axis);
if (!BitSet64::hasBit(bits, axis)) {
if (value == 0) {
return OK; // axes with value 0 do not need to be stored
}
uint32_t count = BitSet64::count(bits);
if (count >= MAX_AXES) {
tooManyAxes(axis);
return NO_MEMORY;
}
BitSet64::markBit(bits, axis);
for (uint32_t i = count; i > index; i--) {
values[i] = values[i - 1];
}
}
values[index] = value;
return OK;
}
static inline void scaleAxisValue(PointerCoords& c, int axis, float scaleFactor) {
float value = c.getAxisValue(axis);
if (value != 0) {
c.setAxisValue(axis, value * scaleFactor);
}
}
void PointerCoords::scale(float scaleFactor) {
// No need to scale pressure or size since they are normalized.
// No need to scale orientation since it is meaningless to do so.
scaleAxisValue(*this, AMOTION_EVENT_AXIS_X, scaleFactor);
scaleAxisValue(*this, AMOTION_EVENT_AXIS_Y, scaleFactor);
scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOUCH_MAJOR, scaleFactor);
scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOUCH_MINOR, scaleFactor);
scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOOL_MAJOR, scaleFactor);
scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOOL_MINOR, scaleFactor);
}
void PointerCoords::applyOffset(float xOffset, float yOffset) {
setAxisValue(AMOTION_EVENT_AXIS_X, getX() + xOffset);
setAxisValue(AMOTION_EVENT_AXIS_Y, getY() + yOffset);
}
#ifdef HAVE_ANDROID_OS
status_t PointerCoords::readFromParcel(Parcel* parcel) {
bits = parcel->readInt64();
uint32_t count = BitSet64::count(bits);
if (count > MAX_AXES) {
return BAD_VALUE;
}
for (uint32_t i = 0; i < count; i++) {
values[i] = parcel->readFloat();
}
return OK;
}
status_t PointerCoords::writeToParcel(Parcel* parcel) const {
parcel->writeInt64(bits);
uint32_t count = BitSet64::count(bits);
for (uint32_t i = 0; i < count; i++) {
parcel->writeFloat(values[i]);
}
return OK;
}
#endif
void PointerCoords::tooManyAxes(int axis) {
ALOGW("Could not set value for axis %d because the PointerCoords structure is full and "
"cannot contain more than %d axis values.", axis, int(MAX_AXES));
}
bool PointerCoords::operator==(const PointerCoords& other) const {
if (bits != other.bits) {
return false;
}
uint32_t count = BitSet64::count(bits);
for (uint32_t i = 0; i < count; i++) {
if (values[i] != other.values[i]) {
return false;
}
}
return true;
}
void PointerCoords::copyFrom(const PointerCoords& other) {
bits = other.bits;
uint32_t count = BitSet64::count(bits);
for (uint32_t i = 0; i < count; i++) {
values[i] = other.values[i];
}
}
// --- PointerProperties ---
bool PointerProperties::operator==(const PointerProperties& other) const {
return id == other.id
&& toolType == other.toolType;
}
void PointerProperties::copyFrom(const PointerProperties& other) {
id = other.id;
toolType = other.toolType;
}
// --- MotionEvent ---
void MotionEvent::initialize(
int32_t deviceId,
int32_t source,
int32_t action,
int32_t actionButton,
int32_t flags,
int32_t edgeFlags,
int32_t metaState,
int32_t buttonState,
float xOffset,
float yOffset,
float xPrecision,
float yPrecision,
nsecs_t downTime,
nsecs_t eventTime,
size_t pointerCount,
const PointerProperties* pointerProperties,
const PointerCoords* pointerCoords) {
InputEvent::initialize(deviceId, source);
mAction = action;
mActionButton = actionButton;
mFlags = flags;
mEdgeFlags = edgeFlags;
mMetaState = metaState;
mButtonState = buttonState;
mXOffset = xOffset;
mYOffset = yOffset;
mXPrecision = xPrecision;
mYPrecision = yPrecision;
mDownTime = downTime;
mPointerProperties.clear();
mPointerProperties.appendArray(pointerProperties, pointerCount);
mSampleEventTimes.clear();
mSamplePointerCoords.clear();
addSample(eventTime, pointerCoords);
}
void MotionEvent::copyFrom(const MotionEvent* other, bool keepHistory) {
InputEvent::initialize(other->mDeviceId, other->mSource);
mAction = other->mAction;
mActionButton = other->mActionButton;
mFlags = other->mFlags;
mEdgeFlags = other->mEdgeFlags;
mMetaState = other->mMetaState;
mButtonState = other->mButtonState;
mXOffset = other->mXOffset;
mYOffset = other->mYOffset;
mXPrecision = other->mXPrecision;
mYPrecision = other->mYPrecision;
mDownTime = other->mDownTime;
mPointerProperties = other->mPointerProperties;
if (keepHistory) {
mSampleEventTimes = other->mSampleEventTimes;
mSamplePointerCoords = other->mSamplePointerCoords;
} else {
mSampleEventTimes.clear();
mSampleEventTimes.push(other->getEventTime());
mSamplePointerCoords.clear();
size_t pointerCount = other->getPointerCount();
size_t historySize = other->getHistorySize();
mSamplePointerCoords.appendArray(other->mSamplePointerCoords.array()
+ (historySize * pointerCount), pointerCount);
}
}
void MotionEvent::addSample(
int64_t eventTime,
const PointerCoords* pointerCoords) {
mSampleEventTimes.push(eventTime);
mSamplePointerCoords.appendArray(pointerCoords, getPointerCount());
}
const PointerCoords* MotionEvent::getRawPointerCoords(size_t pointerIndex) const {
return &mSamplePointerCoords[getHistorySize() * getPointerCount() + pointerIndex];
}
float MotionEvent::getRawAxisValue(int32_t axis, size_t pointerIndex) const {
return getRawPointerCoords(pointerIndex)->getAxisValue(axis);
}
float MotionEvent::getAxisValue(int32_t axis, size_t pointerIndex) const {
float value = getRawPointerCoords(pointerIndex)->getAxisValue(axis);
switch (axis) {
case AMOTION_EVENT_AXIS_X:
return value + mXOffset;
case AMOTION_EVENT_AXIS_Y:
return value + mYOffset;
}
return value;
}
const PointerCoords* MotionEvent::getHistoricalRawPointerCoords(
size_t pointerIndex, size_t historicalIndex) const {
return &mSamplePointerCoords[historicalIndex * getPointerCount() + pointerIndex];
}
float MotionEvent::getHistoricalRawAxisValue(int32_t axis, size_t pointerIndex,
size_t historicalIndex) const {
return getHistoricalRawPointerCoords(pointerIndex, historicalIndex)->getAxisValue(axis);
}
float MotionEvent::getHistoricalAxisValue(int32_t axis, size_t pointerIndex,
size_t historicalIndex) const {
float value = getHistoricalRawPointerCoords(pointerIndex, historicalIndex)->getAxisValue(axis);
switch (axis) {
case AMOTION_EVENT_AXIS_X:
return value + mXOffset;
case AMOTION_EVENT_AXIS_Y:
return value + mYOffset;
}
return value;
}
ssize_t MotionEvent::findPointerIndex(int32_t pointerId) const {
size_t pointerCount = mPointerProperties.size();
for (size_t i = 0; i < pointerCount; i++) {
if (mPointerProperties.itemAt(i).id == pointerId) {
return i;
}
}
return -1;
}
void MotionEvent::offsetLocation(float xOffset, float yOffset) {
mXOffset += xOffset;
mYOffset += yOffset;
}
void MotionEvent::scale(float scaleFactor) {
mXOffset *= scaleFactor;
mYOffset *= scaleFactor;
mXPrecision *= scaleFactor;
mYPrecision *= scaleFactor;
size_t numSamples = mSamplePointerCoords.size();
for (size_t i = 0; i < numSamples; i++) {
mSamplePointerCoords.editItemAt(i).scale(scaleFactor);
}
}
static void transformPoint(const float matrix[9], float x, float y, float *outX, float *outY) {
// Apply perspective transform like Skia.
float newX = matrix[0] * x + matrix[1] * y + matrix[2];
float newY = matrix[3] * x + matrix[4] * y + matrix[5];
float newZ = matrix[6] * x + matrix[7] * y + matrix[8];
if (newZ) {
newZ = 1.0f / newZ;
}
*outX = newX * newZ;
*outY = newY * newZ;
}
static float transformAngle(const float matrix[9], float angleRadians,
float originX, float originY) {
// Construct and transform a vector oriented at the specified clockwise angle from vertical.
// Coordinate system: down is increasing Y, right is increasing X.
float x = sinf(angleRadians);
float y = -cosf(angleRadians);
transformPoint(matrix, x, y, &x, &y);
x -= originX;
y -= originY;
// Derive the transformed vector's clockwise angle from vertical.
float result = atan2f(x, -y);
if (result < - M_PI_2) {
result += M_PI;
} else if (result > M_PI_2) {
result -= M_PI;
}
return result;
}
void MotionEvent::transform(const float matrix[9]) {
// The tricky part of this implementation is to preserve the value of
// rawX and rawY. So we apply the transformation to the first point
// then derive an appropriate new X/Y offset that will preserve rawX
// and rawY for that point.
float oldXOffset = mXOffset;
float oldYOffset = mYOffset;
float newX, newY;
float rawX = getRawX(0);
float rawY = getRawY(0);
transformPoint(matrix, rawX + oldXOffset, rawY + oldYOffset, &newX, &newY);
mXOffset = newX - rawX;
mYOffset = newY - rawY;
// Determine how the origin is transformed by the matrix so that we
// can transform orientation vectors.
float originX, originY;
transformPoint(matrix, 0, 0, &originX, &originY);
// Apply the transformation to all samples.
size_t numSamples = mSamplePointerCoords.size();
for (size_t i = 0; i < numSamples; i++) {
PointerCoords& c = mSamplePointerCoords.editItemAt(i);
float x = c.getAxisValue(AMOTION_EVENT_AXIS_X) + oldXOffset;
float y = c.getAxisValue(AMOTION_EVENT_AXIS_Y) + oldYOffset;
transformPoint(matrix, x, y, &x, &y);
c.setAxisValue(AMOTION_EVENT_AXIS_X, x - mXOffset);
c.setAxisValue(AMOTION_EVENT_AXIS_Y, y - mYOffset);
float orientation = c.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION);
c.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION,
transformAngle(matrix, orientation, originX, originY));
}
}
#ifdef HAVE_ANDROID_OS
status_t MotionEvent::readFromParcel(Parcel* parcel) {
size_t pointerCount = parcel->readInt32();
size_t sampleCount = parcel->readInt32();
if (pointerCount == 0 || pointerCount > MAX_POINTERS || sampleCount == 0) {
return BAD_VALUE;
}
mDeviceId = parcel->readInt32();
mSource = parcel->readInt32();
mAction = parcel->readInt32();
mActionButton = parcel->readInt32();
mFlags = parcel->readInt32();
mEdgeFlags = parcel->readInt32();
mMetaState = parcel->readInt32();
mButtonState = parcel->readInt32();
mXOffset = parcel->readFloat();
mYOffset = parcel->readFloat();
mXPrecision = parcel->readFloat();
mYPrecision = parcel->readFloat();
mDownTime = parcel->readInt64();
mPointerProperties.clear();
mPointerProperties.setCapacity(pointerCount);
mSampleEventTimes.clear();
mSampleEventTimes.setCapacity(sampleCount);
mSamplePointerCoords.clear();
mSamplePointerCoords.setCapacity(sampleCount * pointerCount);
for (size_t i = 0; i < pointerCount; i++) {
mPointerProperties.push();
PointerProperties& properties = mPointerProperties.editTop();
properties.id = parcel->readInt32();
properties.toolType = parcel->readInt32();
}
while (sampleCount-- > 0) {
mSampleEventTimes.push(parcel->readInt64());
for (size_t i = 0; i < pointerCount; i++) {
mSamplePointerCoords.push();
status_t status = mSamplePointerCoords.editTop().readFromParcel(parcel);
if (status) {
return status;
}
}
}
return OK;
}
status_t MotionEvent::writeToParcel(Parcel* parcel) const {
size_t pointerCount = mPointerProperties.size();
size_t sampleCount = mSampleEventTimes.size();
parcel->writeInt32(pointerCount);
parcel->writeInt32(sampleCount);
parcel->writeInt32(mDeviceId);
parcel->writeInt32(mSource);
parcel->writeInt32(mAction);
parcel->writeInt32(mActionButton);
parcel->writeInt32(mFlags);
parcel->writeInt32(mEdgeFlags);
parcel->writeInt32(mMetaState);
parcel->writeInt32(mButtonState);
parcel->writeFloat(mXOffset);
parcel->writeFloat(mYOffset);
parcel->writeFloat(mXPrecision);
parcel->writeFloat(mYPrecision);
parcel->writeInt64(mDownTime);
for (size_t i = 0; i < pointerCount; i++) {
const PointerProperties& properties = mPointerProperties.itemAt(i);
parcel->writeInt32(properties.id);
parcel->writeInt32(properties.toolType);
}
const PointerCoords* pc = mSamplePointerCoords.array();
for (size_t h = 0; h < sampleCount; h++) {
parcel->writeInt64(mSampleEventTimes.itemAt(h));
for (size_t i = 0; i < pointerCount; i++) {
status_t status = (pc++)->writeToParcel(parcel);
if (status) {
return status;
}
}
}
return OK;
}
#endif
bool MotionEvent::isTouchEvent(int32_t source, int32_t action) {
if (source & AINPUT_SOURCE_CLASS_POINTER) {
// Specifically excludes HOVER_MOVE and SCROLL.
switch (action & AMOTION_EVENT_ACTION_MASK) {
case AMOTION_EVENT_ACTION_DOWN:
case AMOTION_EVENT_ACTION_MOVE:
case AMOTION_EVENT_ACTION_UP:
case AMOTION_EVENT_ACTION_POINTER_DOWN:
case AMOTION_EVENT_ACTION_POINTER_UP:
case AMOTION_EVENT_ACTION_CANCEL:
case AMOTION_EVENT_ACTION_OUTSIDE:
return true;
}
}
return false;
}
const char* MotionEvent::getLabel(int32_t axis) {
return getAxisLabel(axis);
}
int32_t MotionEvent::getAxisFromLabel(const char* label) {
return getAxisByLabel(label);
}
// --- PooledInputEventFactory ---
PooledInputEventFactory::PooledInputEventFactory(size_t maxPoolSize) :
mMaxPoolSize(maxPoolSize) {
}
PooledInputEventFactory::~PooledInputEventFactory() {
for (size_t i = 0; i < mKeyEventPool.size(); i++) {
delete mKeyEventPool.itemAt(i);
}
for (size_t i = 0; i < mMotionEventPool.size(); i++) {
delete mMotionEventPool.itemAt(i);
}
}
KeyEvent* PooledInputEventFactory::createKeyEvent() {
if (!mKeyEventPool.isEmpty()) {
KeyEvent* event = mKeyEventPool.top();
mKeyEventPool.pop();
return event;
}
return new KeyEvent();
}
MotionEvent* PooledInputEventFactory::createMotionEvent() {
if (!mMotionEventPool.isEmpty()) {
MotionEvent* event = mMotionEventPool.top();
mMotionEventPool.pop();
return event;
}
return new MotionEvent();
}
void PooledInputEventFactory::recycle(InputEvent* event) {
switch (event->getType()) {
case AINPUT_EVENT_TYPE_KEY:
if (mKeyEventPool.size() < mMaxPoolSize) {
mKeyEventPool.push(static_cast<KeyEvent*>(event));
return;
}
break;
case AINPUT_EVENT_TYPE_MOTION:
if (mMotionEventPool.size() < mMaxPoolSize) {
mMotionEventPool.push(static_cast<MotionEvent*>(event));
return;
}
break;
}
delete event;
}
} // namespace android