vector and matrix classes for graphics use
- this implements vec2, vec3, vec4, which are float vectors
of size 2, 3 and 4 respectively.
the code allows easy instantiation of vectors of a different
type via the tvec{2|3|4}<T> template classes.
- this also implements mat4 which is a float 4x4 matrix. the
tmat44<T> template class allows easy instantiation of a
4x4 matrix of a different value_type.
The vector types have some minimal support for the
glsl style swizzled access; for instance:
vec4 u;
vec3 v = u.xyz;
only .x, .xy, .xyz and their .stpq / .rgba equivalent are
supported.
most operators are supported on both vector and matrices:
arithmetic, unary, compound assignment and comparison
(bit-wise operators NOT supported).
- operations available on vectors include:
dot, length, distance, normalize and cross
- operations available on matrices include:
transpose, inverse, trace
- and a few utilities to create matrices:
ortho, frustum, lookAt
Change-Id: I64add89ae90fa78d3f2f59985b63495575378635
2013-08-22 06:10:41 +00:00
|
|
|
/*
|
|
|
|
* Copyright 2013 The Android Open Source Project
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef UI_MAT4_H
|
|
|
|
#define UI_MAT4_H
|
|
|
|
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <sys/types.h>
|
|
|
|
|
|
|
|
#include <ui/vec4.h>
|
|
|
|
#include <utils/String8.h>
|
|
|
|
|
|
|
|
#define TMAT_IMPLEMENTATION
|
|
|
|
#include <ui/TMatHelpers.h>
|
|
|
|
|
|
|
|
#define PURE __attribute__((pure))
|
|
|
|
|
|
|
|
namespace android {
|
|
|
|
// -------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
class tmat44 : public TVecUnaryOperators<tmat44, T>,
|
2013-09-02 04:35:36 +00:00
|
|
|
public TVecComparisonOperators<tmat44, T>,
|
|
|
|
public TVecAddOperators<tmat44, T>,
|
|
|
|
public TMatProductOperators<tmat44, T>,
|
|
|
|
public TMatSquareFunctions<tmat44, T>,
|
|
|
|
public TMatDebug<tmat44, T>
|
vector and matrix classes for graphics use
- this implements vec2, vec3, vec4, which are float vectors
of size 2, 3 and 4 respectively.
the code allows easy instantiation of vectors of a different
type via the tvec{2|3|4}<T> template classes.
- this also implements mat4 which is a float 4x4 matrix. the
tmat44<T> template class allows easy instantiation of a
4x4 matrix of a different value_type.
The vector types have some minimal support for the
glsl style swizzled access; for instance:
vec4 u;
vec3 v = u.xyz;
only .x, .xy, .xyz and their .stpq / .rgba equivalent are
supported.
most operators are supported on both vector and matrices:
arithmetic, unary, compound assignment and comparison
(bit-wise operators NOT supported).
- operations available on vectors include:
dot, length, distance, normalize and cross
- operations available on matrices include:
transpose, inverse, trace
- and a few utilities to create matrices:
ortho, frustum, lookAt
Change-Id: I64add89ae90fa78d3f2f59985b63495575378635
2013-08-22 06:10:41 +00:00
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum no_init { NO_INIT };
|
|
|
|
typedef T value_type;
|
|
|
|
typedef T& reference;
|
|
|
|
typedef T const& const_reference;
|
|
|
|
typedef size_t size_type;
|
|
|
|
typedef tvec4<T> col_type;
|
|
|
|
typedef tvec4<T> row_type;
|
|
|
|
|
|
|
|
// size of a column (i.e.: number of rows)
|
|
|
|
enum { COL_SIZE = col_type::SIZE };
|
|
|
|
static inline size_t col_size() { return COL_SIZE; }
|
|
|
|
|
|
|
|
// size of a row (i.e.: number of columns)
|
|
|
|
enum { ROW_SIZE = row_type::SIZE };
|
|
|
|
static inline size_t row_size() { return ROW_SIZE; }
|
|
|
|
static inline size_t size() { return row_size(); } // for TVec*<>
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* <-- N columns -->
|
|
|
|
*
|
|
|
|
* a00 a10 a20 ... aN0 ^
|
|
|
|
* a01 a11 a21 ... aN1 |
|
|
|
|
* a02 a12 a22 ... aN2 M rows
|
|
|
|
* ... |
|
|
|
|
* a0M a1M a2M ... aNM v
|
|
|
|
*
|
|
|
|
* COL_SIZE = M
|
|
|
|
* ROW_SIZE = N
|
|
|
|
* m[0] = [a00 a01 a02 ... a01M]
|
|
|
|
*/
|
|
|
|
|
|
|
|
col_type mValue[ROW_SIZE];
|
|
|
|
|
|
|
|
public:
|
|
|
|
// array access
|
|
|
|
inline col_type const& operator [] (size_t i) const { return mValue[i]; }
|
|
|
|
inline col_type& operator [] (size_t i) { return mValue[i]; }
|
|
|
|
|
|
|
|
T const* asArray() const { return &mValue[0][0]; }
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------
|
|
|
|
// we don't provide copy-ctor and operator= on purpose
|
|
|
|
// because we want the compiler generated versions
|
|
|
|
|
|
|
|
/*
|
|
|
|
* constructors
|
|
|
|
*/
|
|
|
|
|
|
|
|
// leaves object uninitialized. use with caution.
|
|
|
|
explicit tmat44(no_init) { }
|
|
|
|
|
|
|
|
// initialize to identity
|
|
|
|
tmat44();
|
|
|
|
|
|
|
|
// initialize to Identity*scalar.
|
|
|
|
template<typename U>
|
|
|
|
explicit tmat44(U v);
|
|
|
|
|
|
|
|
// sets the diagonal to the passed vector
|
|
|
|
template <typename U>
|
|
|
|
explicit tmat44(const tvec4<U>& rhs);
|
|
|
|
|
|
|
|
// construct from another matrix of the same size
|
|
|
|
template <typename U>
|
|
|
|
explicit tmat44(const tmat44<U>& rhs);
|
|
|
|
|
|
|
|
// construct from 4 column vectors
|
|
|
|
template <typename A, typename B, typename C, typename D>
|
|
|
|
tmat44(const tvec4<A>& v0, const tvec4<B>& v1, const tvec4<C>& v2, const tvec4<D>& v3);
|
|
|
|
|
2013-09-02 04:35:36 +00:00
|
|
|
// construct from 16 scalars
|
|
|
|
template <
|
|
|
|
typename A, typename B, typename C, typename D,
|
|
|
|
typename E, typename F, typename G, typename H,
|
|
|
|
typename I, typename J, typename K, typename L,
|
|
|
|
typename M, typename N, typename O, typename P>
|
|
|
|
tmat44( A m00, B m01, C m02, D m03,
|
|
|
|
E m10, F m11, G m12, H m13,
|
|
|
|
I m20, J m21, K m22, L m23,
|
|
|
|
M m30, N m31, O m32, P m33);
|
|
|
|
|
vector and matrix classes for graphics use
- this implements vec2, vec3, vec4, which are float vectors
of size 2, 3 and 4 respectively.
the code allows easy instantiation of vectors of a different
type via the tvec{2|3|4}<T> template classes.
- this also implements mat4 which is a float 4x4 matrix. the
tmat44<T> template class allows easy instantiation of a
4x4 matrix of a different value_type.
The vector types have some minimal support for the
glsl style swizzled access; for instance:
vec4 u;
vec3 v = u.xyz;
only .x, .xy, .xyz and their .stpq / .rgba equivalent are
supported.
most operators are supported on both vector and matrices:
arithmetic, unary, compound assignment and comparison
(bit-wise operators NOT supported).
- operations available on vectors include:
dot, length, distance, normalize and cross
- operations available on matrices include:
transpose, inverse, trace
- and a few utilities to create matrices:
ortho, frustum, lookAt
Change-Id: I64add89ae90fa78d3f2f59985b63495575378635
2013-08-22 06:10:41 +00:00
|
|
|
// construct from a C array
|
|
|
|
template <typename U>
|
|
|
|
explicit tmat44(U const* rawArray);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* helpers
|
|
|
|
*/
|
|
|
|
|
|
|
|
static tmat44 ortho(T left, T right, T bottom, T top, T near, T far);
|
|
|
|
|
|
|
|
static tmat44 frustum(T left, T right, T bottom, T top, T near, T far);
|
|
|
|
|
|
|
|
template <typename A, typename B, typename C>
|
|
|
|
static tmat44 lookAt(const tvec3<A>& eye, const tvec3<B>& center, const tvec3<C>& up);
|
|
|
|
|
|
|
|
template <typename A>
|
|
|
|
static tmat44 translate(const tvec4<A>& t);
|
|
|
|
|
|
|
|
template <typename A>
|
|
|
|
static tmat44 scale(const tvec4<A>& s);
|
|
|
|
|
|
|
|
template <typename A, typename B>
|
|
|
|
static tmat44 rotate(A radian, const tvec3<B>& about);
|
|
|
|
};
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
// Constructors
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Since the matrix code could become pretty big quickly, we don't inline most
|
|
|
|
* operations.
|
|
|
|
*/
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
tmat44<T>::tmat44() {
|
|
|
|
mValue[0] = col_type(1,0,0,0);
|
|
|
|
mValue[1] = col_type(0,1,0,0);
|
|
|
|
mValue[2] = col_type(0,0,1,0);
|
|
|
|
mValue[3] = col_type(0,0,0,1);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
template <typename U>
|
|
|
|
tmat44<T>::tmat44(U v) {
|
|
|
|
mValue[0] = col_type(v,0,0,0);
|
|
|
|
mValue[1] = col_type(0,v,0,0);
|
|
|
|
mValue[2] = col_type(0,0,v,0);
|
|
|
|
mValue[3] = col_type(0,0,0,v);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
|
|
template<typename U>
|
|
|
|
tmat44<T>::tmat44(const tvec4<U>& v) {
|
|
|
|
mValue[0] = col_type(v.x,0,0,0);
|
|
|
|
mValue[1] = col_type(0,v.y,0,0);
|
|
|
|
mValue[2] = col_type(0,0,v.z,0);
|
|
|
|
mValue[3] = col_type(0,0,0,v.w);
|
|
|
|
}
|
|
|
|
|
2013-09-02 04:35:36 +00:00
|
|
|
// construct from 16 scalars
|
|
|
|
template<typename T>
|
|
|
|
template <
|
|
|
|
typename A, typename B, typename C, typename D,
|
|
|
|
typename E, typename F, typename G, typename H,
|
|
|
|
typename I, typename J, typename K, typename L,
|
|
|
|
typename M, typename N, typename O, typename P>
|
|
|
|
tmat44<T>::tmat44( A m00, B m01, C m02, D m03,
|
|
|
|
E m10, F m11, G m12, H m13,
|
|
|
|
I m20, J m21, K m22, L m23,
|
|
|
|
M m30, N m31, O m32, P m33) {
|
|
|
|
mValue[0] = col_type(m00, m01, m02, m03);
|
|
|
|
mValue[1] = col_type(m10, m11, m12, m13);
|
|
|
|
mValue[2] = col_type(m20, m21, m22, m23);
|
|
|
|
mValue[3] = col_type(m30, m31, m32, m33);
|
|
|
|
}
|
|
|
|
|
vector and matrix classes for graphics use
- this implements vec2, vec3, vec4, which are float vectors
of size 2, 3 and 4 respectively.
the code allows easy instantiation of vectors of a different
type via the tvec{2|3|4}<T> template classes.
- this also implements mat4 which is a float 4x4 matrix. the
tmat44<T> template class allows easy instantiation of a
4x4 matrix of a different value_type.
The vector types have some minimal support for the
glsl style swizzled access; for instance:
vec4 u;
vec3 v = u.xyz;
only .x, .xy, .xyz and their .stpq / .rgba equivalent are
supported.
most operators are supported on both vector and matrices:
arithmetic, unary, compound assignment and comparison
(bit-wise operators NOT supported).
- operations available on vectors include:
dot, length, distance, normalize and cross
- operations available on matrices include:
transpose, inverse, trace
- and a few utilities to create matrices:
ortho, frustum, lookAt
Change-Id: I64add89ae90fa78d3f2f59985b63495575378635
2013-08-22 06:10:41 +00:00
|
|
|
template <typename T>
|
|
|
|
template <typename U>
|
|
|
|
tmat44<T>::tmat44(const tmat44<U>& rhs) {
|
|
|
|
for (size_t r=0 ; r<row_size() ; r++)
|
|
|
|
mValue[r] = rhs[r];
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
template <typename A, typename B, typename C, typename D>
|
|
|
|
tmat44<T>::tmat44(const tvec4<A>& v0, const tvec4<B>& v1, const tvec4<C>& v2, const tvec4<D>& v3) {
|
|
|
|
mValue[0] = v0;
|
|
|
|
mValue[1] = v1;
|
|
|
|
mValue[2] = v2;
|
|
|
|
mValue[3] = v3;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
template <typename U>
|
|
|
|
tmat44<T>::tmat44(U const* rawArray) {
|
|
|
|
for (size_t r=0 ; r<row_size() ; r++)
|
|
|
|
for (size_t c=0 ; c<col_size() ; c++)
|
|
|
|
mValue[r][c] = *rawArray++;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
// Helpers
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
tmat44<T> tmat44<T>::ortho(T left, T right, T bottom, T top, T near, T far) {
|
|
|
|
tmat44<T> m;
|
|
|
|
m[0][0] = 2 / (right - left);
|
|
|
|
m[1][1] = 2 / (top - bottom);
|
|
|
|
m[2][2] = -2 / (far - near);
|
|
|
|
m[3][0] = -(right + left) / (right - left);
|
|
|
|
m[3][1] = -(top + bottom) / (top - bottom);
|
|
|
|
m[3][2] = -(far + near) / (far - near);
|
|
|
|
return m;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
tmat44<T> tmat44<T>::frustum(T left, T right, T bottom, T top, T near, T far) {
|
|
|
|
tmat44<T> m;
|
|
|
|
T A = (right + left) / (right - left);
|
|
|
|
T B = (top + bottom) / (top - bottom);
|
|
|
|
T C = (far + near) / (far - near);
|
|
|
|
T D = (2 * far * near) / (far - near);
|
|
|
|
m[0][0] = (2 * near) / (right - left);
|
|
|
|
m[1][1] = (2 * near) / (top - bottom);
|
|
|
|
m[2][0] = A;
|
|
|
|
m[2][1] = B;
|
|
|
|
m[2][2] = C;
|
|
|
|
m[2][3] =-1;
|
|
|
|
m[3][2] = D;
|
|
|
|
m[3][3] = 0;
|
|
|
|
return m;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
template <typename A, typename B, typename C>
|
|
|
|
tmat44<T> tmat44<T>::lookAt(const tvec3<A>& eye, const tvec3<B>& center, const tvec3<C>& up) {
|
|
|
|
tvec3<T> L(normalize(center - eye));
|
|
|
|
tvec3<T> S(normalize( cross(L, up) ));
|
|
|
|
tvec3<T> U(cross(S, L));
|
|
|
|
return tmat44<T>(
|
|
|
|
tvec4<T>( S, 0),
|
|
|
|
tvec4<T>( U, 0),
|
|
|
|
tvec4<T>(-L, 0),
|
|
|
|
tvec4<T>(-eye, 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
template <typename A>
|
|
|
|
tmat44<T> tmat44<T>::translate(const tvec4<A>& t) {
|
|
|
|
tmat44<T> r;
|
|
|
|
r[3] = t;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
template <typename A>
|
|
|
|
tmat44<T> tmat44<T>::scale(const tvec4<A>& s) {
|
|
|
|
tmat44<T> r;
|
|
|
|
r[0][0] = s[0];
|
|
|
|
r[1][1] = s[1];
|
|
|
|
r[2][2] = s[2];
|
|
|
|
r[3][3] = s[3];
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
template <typename A, typename B>
|
|
|
|
tmat44<T> tmat44<T>::rotate(A radian, const tvec3<B>& about) {
|
|
|
|
tmat44<T> rotation;
|
|
|
|
T* r = const_cast<T*>(rotation.asArray());
|
|
|
|
T c = cos(radian);
|
|
|
|
T s = sin(radian);
|
|
|
|
if (about.x==1 && about.y==0 && about.z==0) {
|
|
|
|
r[5] = c; r[10]= c;
|
|
|
|
r[6] = s; r[9] = -s;
|
|
|
|
} else if (about.x==0 && about.y==1 && about.z==0) {
|
|
|
|
r[0] = c; r[10]= c;
|
|
|
|
r[8] = s; r[2] = -s;
|
|
|
|
} else if (about.x==0 && about.y==0 && about.z==1) {
|
|
|
|
r[0] = c; r[5] = c;
|
|
|
|
r[1] = s; r[4] = -s;
|
|
|
|
} else {
|
|
|
|
tvec3<B> nabout = normalize(about);
|
|
|
|
B x = nabout.x;
|
|
|
|
B y = nabout.y;
|
|
|
|
B z = nabout.z;
|
|
|
|
T nc = 1 - c;
|
|
|
|
T xy = x * y;
|
|
|
|
T yz = y * z;
|
|
|
|
T zx = z * x;
|
|
|
|
T xs = x * s;
|
|
|
|
T ys = y * s;
|
|
|
|
T zs = z * s;
|
|
|
|
r[ 0] = x*x*nc + c; r[ 4] = xy*nc - zs; r[ 8] = zx*nc + ys;
|
|
|
|
r[ 1] = xy*nc + zs; r[ 5] = y*y*nc + c; r[ 9] = yz*nc - xs;
|
|
|
|
r[ 2] = zx*nc - ys; r[ 6] = yz*nc + xs; r[10] = z*z*nc + c;
|
|
|
|
}
|
2014-09-04 15:28:54 +00:00
|
|
|
return rotation;
|
vector and matrix classes for graphics use
- this implements vec2, vec3, vec4, which are float vectors
of size 2, 3 and 4 respectively.
the code allows easy instantiation of vectors of a different
type via the tvec{2|3|4}<T> template classes.
- this also implements mat4 which is a float 4x4 matrix. the
tmat44<T> template class allows easy instantiation of a
4x4 matrix of a different value_type.
The vector types have some minimal support for the
glsl style swizzled access; for instance:
vec4 u;
vec3 v = u.xyz;
only .x, .xy, .xyz and their .stpq / .rgba equivalent are
supported.
most operators are supported on both vector and matrices:
arithmetic, unary, compound assignment and comparison
(bit-wise operators NOT supported).
- operations available on vectors include:
dot, length, distance, normalize and cross
- operations available on matrices include:
transpose, inverse, trace
- and a few utilities to create matrices:
ortho, frustum, lookAt
Change-Id: I64add89ae90fa78d3f2f59985b63495575378635
2013-08-22 06:10:41 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
// Arithmetic operators outside of class
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
/* We use non-friend functions here to prevent the compiler from using
|
|
|
|
* implicit conversions, for instance of a scalar to a vector. The result would
|
|
|
|
* not be what the caller expects.
|
|
|
|
*
|
|
|
|
* Also note that the order of the arguments in the inner loop is important since
|
|
|
|
* it determines the output type (only relevant when T != U).
|
|
|
|
*/
|
|
|
|
|
|
|
|
// matrix * vector, result is a vector of the same type than the input vector
|
|
|
|
template <typename T, typename U>
|
|
|
|
typename tmat44<U>::col_type PURE operator *(const tmat44<T>& lv, const tvec4<U>& rv) {
|
|
|
|
typename tmat44<U>::col_type result;
|
|
|
|
for (size_t r=0 ; r<tmat44<T>::row_size() ; r++)
|
|
|
|
result += rv[r]*lv[r];
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
// vector * matrix, result is a vector of the same type than the input vector
|
|
|
|
template <typename T, typename U>
|
|
|
|
typename tmat44<U>::row_type PURE operator *(const tvec4<U>& rv, const tmat44<T>& lv) {
|
|
|
|
typename tmat44<U>::row_type result(tmat44<U>::row_type::NO_INIT);
|
|
|
|
for (size_t r=0 ; r<tmat44<T>::row_size() ; r++)
|
|
|
|
result[r] = dot(rv, lv[r]);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
// matrix * scalar, result is a matrix of the same type than the input matrix
|
|
|
|
template <typename T, typename U>
|
|
|
|
tmat44<T> PURE operator *(const tmat44<T>& lv, U rv) {
|
|
|
|
tmat44<T> result(tmat44<T>::NO_INIT);
|
|
|
|
for (size_t r=0 ; r<tmat44<T>::row_size() ; r++)
|
|
|
|
result[r] = lv[r]*rv;
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
// scalar * matrix, result is a matrix of the same type than the input matrix
|
|
|
|
template <typename T, typename U>
|
|
|
|
tmat44<T> PURE operator *(U rv, const tmat44<T>& lv) {
|
|
|
|
tmat44<T> result(tmat44<T>::NO_INIT);
|
|
|
|
for (size_t r=0 ; r<tmat44<T>::row_size() ; r++)
|
|
|
|
result[r] = lv[r]*rv;
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
|
2013-09-02 04:35:36 +00:00
|
|
|
/* FIXME: this should go into TMatSquareFunctions<> but for some reason
|
|
|
|
* BASE<T>::col_type is not accessible from there (???)
|
|
|
|
*/
|
|
|
|
template<typename T>
|
|
|
|
typename tmat44<T>::col_type PURE diag(const tmat44<T>& m) {
|
vector and matrix classes for graphics use
- this implements vec2, vec3, vec4, which are float vectors
of size 2, 3 and 4 respectively.
the code allows easy instantiation of vectors of a different
type via the tvec{2|3|4}<T> template classes.
- this also implements mat4 which is a float 4x4 matrix. the
tmat44<T> template class allows easy instantiation of a
4x4 matrix of a different value_type.
The vector types have some minimal support for the
glsl style swizzled access; for instance:
vec4 u;
vec3 v = u.xyz;
only .x, .xy, .xyz and their .stpq / .rgba equivalent are
supported.
most operators are supported on both vector and matrices:
arithmetic, unary, compound assignment and comparison
(bit-wise operators NOT supported).
- operations available on vectors include:
dot, length, distance, normalize and cross
- operations available on matrices include:
transpose, inverse, trace
- and a few utilities to create matrices:
ortho, frustum, lookAt
Change-Id: I64add89ae90fa78d3f2f59985b63495575378635
2013-08-22 06:10:41 +00:00
|
|
|
return matrix::diag(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
typedef tmat44<float> mat4;
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
}; // namespace android
|
|
|
|
|
|
|
|
#undef PURE
|
|
|
|
|
|
|
|
#endif /* UI_MAT4_H */
|