replicant-frameworks_native/libs/gui/Sensor.cpp

432 lines
14 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/limits.h>
#include <utils/Errors.h>
#include <utils/String8.h>
#include <utils/Flattenable.h>
#include <hardware/sensors.h>
#include <gui/Sensor.h>
#include <log/log.h>
// ----------------------------------------------------------------------------
namespace android {
// ----------------------------------------------------------------------------
Sensor::Sensor()
: mHandle(0), mType(0),
mMinValue(0), mMaxValue(0), mResolution(0),
mPower(0), mMinDelay(0), mFifoReservedEventCount(0), mFifoMaxEventCount(0),
mMaxDelay(0), mFlags(0)
{
}
Sensor::Sensor(struct sensor_t const* hwSensor, int halVersion)
{
mName = hwSensor->name;
mVendor = hwSensor->vendor;
mVersion = hwSensor->version;
mHandle = hwSensor->handle;
mType = hwSensor->type;
mMinValue = 0; // FIXME: minValue
mMaxValue = hwSensor->maxRange; // FIXME: maxValue
mResolution = hwSensor->resolution;
mPower = hwSensor->power;
mMinDelay = hwSensor->minDelay;
mFlags = 0;
// Set fifo event count zero for older devices which do not support batching. Fused
// sensors also have their fifo counts set to zero.
if (halVersion > SENSORS_DEVICE_API_VERSION_1_0) {
mFifoReservedEventCount = hwSensor->fifoReservedEventCount;
mFifoMaxEventCount = hwSensor->fifoMaxEventCount;
} else {
mFifoReservedEventCount = 0;
mFifoMaxEventCount = 0;
}
if (halVersion >= SENSORS_DEVICE_API_VERSION_1_3) {
if (hwSensor->maxDelay > INT_MAX) {
// Max delay is declared as a 64 bit integer for 64 bit architectures. But it should
// always fit in a 32 bit integer, log error and cap it to INT_MAX.
ALOGE("Sensor maxDelay overflow error %s %" PRId64, mName.string(),
static_cast<int64_t>(hwSensor->maxDelay));
mMaxDelay = INT_MAX;
} else {
mMaxDelay = static_cast<int32_t>(hwSensor->maxDelay);
}
} else {
// For older hals set maxDelay to 0.
mMaxDelay = 0;
}
// Ensure existing sensors have correct string type, required permissions and reporting mode.
// Set reportingMode for all android defined sensor types, set wake-up flag only for proximity
// sensor, significant motion, tilt, pick_up gesture, wake gesture and glance gesture on older
// HALs. Newer HALs can define both wake-up and non wake-up proximity sensors.
// All the OEM defined defined sensors have flags set to whatever is provided by the HAL.
switch (mType) {
case SENSOR_TYPE_ACCELEROMETER:
mStringType = SENSOR_STRING_TYPE_ACCELEROMETER;
mFlags |= SENSOR_FLAG_CONTINUOUS_MODE;
break;
case SENSOR_TYPE_AMBIENT_TEMPERATURE:
mStringType = SENSOR_STRING_TYPE_AMBIENT_TEMPERATURE;
mFlags |= SENSOR_FLAG_ON_CHANGE_MODE;
break;
case SENSOR_TYPE_GAME_ROTATION_VECTOR:
mStringType = SENSOR_STRING_TYPE_GAME_ROTATION_VECTOR;
mFlags |= SENSOR_FLAG_CONTINUOUS_MODE;
break;
case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
mStringType = SENSOR_STRING_TYPE_GEOMAGNETIC_ROTATION_VECTOR;
mFlags |= SENSOR_FLAG_CONTINUOUS_MODE;
break;
case SENSOR_TYPE_GRAVITY:
mStringType = SENSOR_STRING_TYPE_GRAVITY;
mFlags |= SENSOR_FLAG_CONTINUOUS_MODE;
break;
case SENSOR_TYPE_GYROSCOPE:
mStringType = SENSOR_STRING_TYPE_GYROSCOPE;
mFlags |= SENSOR_FLAG_CONTINUOUS_MODE;
break;
case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
mStringType = SENSOR_STRING_TYPE_GYROSCOPE_UNCALIBRATED;
mFlags |= SENSOR_FLAG_CONTINUOUS_MODE;
break;
case SENSOR_TYPE_HEART_RATE:
mStringType = SENSOR_STRING_TYPE_HEART_RATE;
mRequiredPermission = SENSOR_PERMISSION_BODY_SENSORS;
mFlags |= SENSOR_FLAG_ON_CHANGE_MODE;
break;
case SENSOR_TYPE_LIGHT:
mStringType = SENSOR_STRING_TYPE_LIGHT;
mFlags |= SENSOR_FLAG_ON_CHANGE_MODE;
break;
case SENSOR_TYPE_LINEAR_ACCELERATION:
mStringType = SENSOR_STRING_TYPE_LINEAR_ACCELERATION;
mFlags |= SENSOR_FLAG_CONTINUOUS_MODE;
break;
case SENSOR_TYPE_MAGNETIC_FIELD:
mStringType = SENSOR_STRING_TYPE_MAGNETIC_FIELD;
mFlags |= SENSOR_FLAG_CONTINUOUS_MODE;
break;
case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
mStringType = SENSOR_STRING_TYPE_MAGNETIC_FIELD_UNCALIBRATED;
mFlags |= SENSOR_FLAG_CONTINUOUS_MODE;
break;
case SENSOR_TYPE_ORIENTATION:
mStringType = SENSOR_STRING_TYPE_ORIENTATION;
mFlags |= SENSOR_FLAG_CONTINUOUS_MODE;
break;
case SENSOR_TYPE_PRESSURE:
mStringType = SENSOR_STRING_TYPE_PRESSURE;
mFlags |= SENSOR_FLAG_CONTINUOUS_MODE;
break;
case SENSOR_TYPE_PROXIMITY:
mStringType = SENSOR_STRING_TYPE_PROXIMITY;
mFlags |= SENSOR_FLAG_ON_CHANGE_MODE;
if (halVersion < SENSORS_DEVICE_API_VERSION_1_3) {
mFlags |= SENSOR_FLAG_WAKE_UP;
}
break;
case SENSOR_TYPE_RELATIVE_HUMIDITY:
mStringType = SENSOR_STRING_TYPE_RELATIVE_HUMIDITY;
mFlags |= SENSOR_FLAG_ON_CHANGE_MODE;
break;
case SENSOR_TYPE_ROTATION_VECTOR:
mStringType = SENSOR_STRING_TYPE_ROTATION_VECTOR;
mFlags |= SENSOR_FLAG_CONTINUOUS_MODE;
break;
case SENSOR_TYPE_SIGNIFICANT_MOTION:
mStringType = SENSOR_STRING_TYPE_SIGNIFICANT_MOTION;
mFlags |= SENSOR_FLAG_ONE_SHOT_MODE;
if (halVersion < SENSORS_DEVICE_API_VERSION_1_3) {
mFlags |= SENSOR_FLAG_WAKE_UP;
}
break;
case SENSOR_TYPE_STEP_COUNTER:
mStringType = SENSOR_STRING_TYPE_STEP_COUNTER;
mFlags |= SENSOR_FLAG_ON_CHANGE_MODE;
break;
case SENSOR_TYPE_STEP_DETECTOR:
mStringType = SENSOR_STRING_TYPE_STEP_DETECTOR;
mFlags |= SENSOR_FLAG_SPECIAL_REPORTING_MODE;
break;
case SENSOR_TYPE_TEMPERATURE:
mStringType = SENSOR_STRING_TYPE_TEMPERATURE;
mFlags |= SENSOR_FLAG_ON_CHANGE_MODE;
break;
case SENSOR_TYPE_TILT_DETECTOR:
mStringType = SENSOR_STRING_TYPE_TILT_DETECTOR;
mFlags |= SENSOR_FLAG_SPECIAL_REPORTING_MODE;
if (halVersion < SENSORS_DEVICE_API_VERSION_1_3) {
mFlags |= SENSOR_FLAG_WAKE_UP;
}
break;
case SENSOR_TYPE_WAKE_GESTURE:
mStringType = SENSOR_STRING_TYPE_WAKE_GESTURE;
mFlags |= SENSOR_FLAG_ONE_SHOT_MODE;
if (halVersion < SENSORS_DEVICE_API_VERSION_1_3) {
mFlags |= SENSOR_FLAG_WAKE_UP;
}
break;
case SENSOR_TYPE_GLANCE_GESTURE:
mStringType = SENSOR_STRING_TYPE_GLANCE_GESTURE;
mFlags |= SENSOR_FLAG_ONE_SHOT_MODE;
if (halVersion < SENSORS_DEVICE_API_VERSION_1_3) {
mFlags |= SENSOR_FLAG_WAKE_UP;
}
break;
case SENSOR_TYPE_PICK_UP_GESTURE:
mStringType = SENSOR_STRING_TYPE_PICK_UP_GESTURE;
mFlags |= SENSOR_FLAG_ONE_SHOT_MODE;
if (halVersion < SENSORS_DEVICE_API_VERSION_1_3) {
mFlags |= SENSOR_FLAG_WAKE_UP;
}
break;
default:
// Only pipe the stringType, requiredPermission and flags for custom sensors.
if (halVersion > SENSORS_DEVICE_API_VERSION_1_0 && hwSensor->stringType) {
mStringType = hwSensor->stringType;
}
if (halVersion > SENSORS_DEVICE_API_VERSION_1_0 && hwSensor->requiredPermission) {
mRequiredPermission = hwSensor->requiredPermission;
}
if (halVersion >= SENSORS_DEVICE_API_VERSION_1_3) {
mFlags = static_cast<uint32_t>(hwSensor->flags);
} else {
// This is an OEM defined sensor on an older HAL. Use minDelay to determine the
// reporting mode of the sensor.
if (mMinDelay > 0) {
mFlags |= SENSOR_FLAG_CONTINUOUS_MODE;
} else if (mMinDelay == 0) {
mFlags |= SENSOR_FLAG_ON_CHANGE_MODE;
} else if (mMinDelay < 0) {
mFlags |= SENSOR_FLAG_ONE_SHOT_MODE;
}
}
break;
}
// For the newer HALs log errors if reporting mask flags are set incorrectly.
if (halVersion >= SENSORS_DEVICE_API_VERSION_1_3) {
// Wake-up flag is set here.
mFlags |= (hwSensor->flags & SENSOR_FLAG_WAKE_UP);
if (mFlags != hwSensor->flags) {
int actualReportingMode =
(hwSensor->flags & REPORTING_MODE_MASK) >> REPORTING_MODE_SHIFT;
int expectedReportingMode = (mFlags & REPORTING_MODE_MASK) >> REPORTING_MODE_SHIFT;
if (actualReportingMode != expectedReportingMode) {
ALOGE("Reporting Mode incorrect: sensor %s handle=%d type=%d "
"actual=%d expected=%d",
mName.string(), mHandle, mType, actualReportingMode, expectedReportingMode);
}
}
}
}
Sensor::~Sensor()
{
}
const String8& Sensor::getName() const {
return mName;
}
const String8& Sensor::getVendor() const {
return mVendor;
}
int32_t Sensor::getHandle() const {
return mHandle;
}
int32_t Sensor::getType() const {
return mType;
}
float Sensor::getMinValue() const {
return mMinValue;
}
float Sensor::getMaxValue() const {
return mMaxValue;
}
float Sensor::getResolution() const {
return mResolution;
}
float Sensor::getPowerUsage() const {
return mPower;
}
int32_t Sensor::getMinDelay() const {
return mMinDelay;
}
nsecs_t Sensor::getMinDelayNs() const {
return getMinDelay() * 1000;
}
int32_t Sensor::getVersion() const {
return mVersion;
}
uint32_t Sensor::getFifoReservedEventCount() const {
return mFifoReservedEventCount;
}
uint32_t Sensor::getFifoMaxEventCount() const {
return mFifoMaxEventCount;
}
const String8& Sensor::getStringType() const {
return mStringType;
}
const String8& Sensor::getRequiredPermission() const {
return mRequiredPermission;
}
int32_t Sensor::getMaxDelay() const {
return mMaxDelay;
}
uint32_t Sensor::getFlags() const {
return mFlags;
}
bool Sensor::isWakeUpSensor() const {
return mFlags & SENSOR_FLAG_WAKE_UP;
}
int32_t Sensor::getReportingMode() const {
return ((mFlags & REPORTING_MODE_MASK) >> REPORTING_MODE_SHIFT);
}
size_t Sensor::getFlattenedSize() const
{
size_t fixedSize =
sizeof(int32_t) * 3 +
sizeof(float) * 4 +
sizeof(int32_t) * 5;
size_t variableSize =
sizeof(uint32_t) + FlattenableUtils::align<4>(mName.length()) +
sizeof(uint32_t) + FlattenableUtils::align<4>(mVendor.length()) +
sizeof(uint32_t) + FlattenableUtils::align<4>(mStringType.length()) +
sizeof(uint32_t) + FlattenableUtils::align<4>(mRequiredPermission.length());
return fixedSize + variableSize;
}
status_t Sensor::flatten(void* buffer, size_t size) const {
if (size < getFlattenedSize()) {
return NO_MEMORY;
}
flattenString8(buffer, size, mName);
flattenString8(buffer, size, mVendor);
FlattenableUtils::write(buffer, size, mVersion);
FlattenableUtils::write(buffer, size, mHandle);
FlattenableUtils::write(buffer, size, mType);
FlattenableUtils::write(buffer, size, mMinValue);
FlattenableUtils::write(buffer, size, mMaxValue);
FlattenableUtils::write(buffer, size, mResolution);
FlattenableUtils::write(buffer, size, mPower);
FlattenableUtils::write(buffer, size, mMinDelay);
FlattenableUtils::write(buffer, size, mFifoReservedEventCount);
FlattenableUtils::write(buffer, size, mFifoMaxEventCount);
flattenString8(buffer, size, mStringType);
flattenString8(buffer, size, mRequiredPermission);
FlattenableUtils::write(buffer, size, mMaxDelay);
FlattenableUtils::write(buffer, size, mFlags);
return NO_ERROR;
}
status_t Sensor::unflatten(void const* buffer, size_t size) {
if (!unflattenString8(buffer, size, mName)) {
return NO_MEMORY;
}
if (!unflattenString8(buffer, size, mVendor)) {
return NO_MEMORY;
}
size_t fixedSize =
sizeof(int32_t) * 3 +
sizeof(float) * 4 +
sizeof(int32_t) * 5;
if (size < fixedSize) {
return NO_MEMORY;
}
FlattenableUtils::read(buffer, size, mVersion);
FlattenableUtils::read(buffer, size, mHandle);
FlattenableUtils::read(buffer, size, mType);
FlattenableUtils::read(buffer, size, mMinValue);
FlattenableUtils::read(buffer, size, mMaxValue);
FlattenableUtils::read(buffer, size, mResolution);
FlattenableUtils::read(buffer, size, mPower);
FlattenableUtils::read(buffer, size, mMinDelay);
FlattenableUtils::read(buffer, size, mFifoReservedEventCount);
FlattenableUtils::read(buffer, size, mFifoMaxEventCount);
if (!unflattenString8(buffer, size, mStringType)) {
return NO_MEMORY;
}
if (!unflattenString8(buffer, size, mRequiredPermission)) {
return NO_MEMORY;
}
FlattenableUtils::read(buffer, size, mMaxDelay);
FlattenableUtils::read(buffer, size, mFlags);
return NO_ERROR;
}
void Sensor::flattenString8(void*& buffer, size_t& size,
const String8& string8) {
uint32_t len = static_cast<uint32_t>(string8.length());
FlattenableUtils::write(buffer, size, len);
memcpy(static_cast<char*>(buffer), string8.string(), len);
FlattenableUtils::advance(buffer, size, FlattenableUtils::align<4>(len));
}
bool Sensor::unflattenString8(void const*& buffer, size_t& size, String8& outputString8) {
uint32_t len;
if (size < sizeof(len)) {
return false;
}
FlattenableUtils::read(buffer, size, len);
if (size < len) {
return false;
}
outputString8.setTo(static_cast<char const*>(buffer), len);
FlattenableUtils::advance(buffer, size, FlattenableUtils::align<4>(len));
return true;
}
// ----------------------------------------------------------------------------
}; // namespace android