replicant-frameworks_native/include/utils/SortedVector.h

283 lines
9.3 KiB
C
Raw Normal View History

2008-10-21 14:00:00 +00:00
/*
* Copyright (C) 2005 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_SORTED_VECTOR_H
#define ANDROID_SORTED_VECTOR_H
#include <assert.h>
#include <stdint.h>
#include <sys/types.h>
#include <utils/Vector.h>
#include <utils/VectorImpl.h>
#include <utils/TypeHelpers.h>
// ---------------------------------------------------------------------------
namespace android {
template <class TYPE>
class SortedVector : private SortedVectorImpl
{
public:
typedef TYPE value_type;
/*!
* Constructors and destructors
*/
SortedVector();
SortedVector(const SortedVector<TYPE>& rhs);
virtual ~SortedVector();
/*! copy operator */
const SortedVector<TYPE>& operator = (const SortedVector<TYPE>& rhs) const;
SortedVector<TYPE>& operator = (const SortedVector<TYPE>& rhs);
/*
* empty the vector
*/
inline void clear() { VectorImpl::clear(); }
/*!
* vector stats
*/
//! returns number of items in the vector
inline size_t size() const { return VectorImpl::size(); }
//! returns wether or not the vector is empty
inline bool isEmpty() const { return VectorImpl::isEmpty(); }
//! returns how many items can be stored without reallocating the backing store
inline size_t capacity() const { return VectorImpl::capacity(); }
//! setst the capacity. capacity can never be reduced less than size()
inline ssize_t setCapacity(size_t size) { return VectorImpl::setCapacity(size); }
/*!
* C-style array access
*/
//! read-only C-style access
inline const TYPE* array() const;
//! read-write C-style access. BE VERY CAREFUL when modifying the array
//! you ust keep it sorted! You usually don't use this function.
TYPE* editArray();
//! finds the index of an item
ssize_t indexOf(const TYPE& item) const;
//! finds where this item should be inserted
size_t orderOf(const TYPE& item) const;
/*!
* accessors
*/
//! read-only access to an item at a given index
inline const TYPE& operator [] (size_t index) const;
//! alternate name for operator []
inline const TYPE& itemAt(size_t index) const;
//! stack-usage of the vector. returns the top of the stack (last element)
const TYPE& top() const;
//! same as operator [], but allows to access the vector backward (from the end) with a negative index
const TYPE& mirrorItemAt(ssize_t index) const;
/*!
* modifing the array
*/
//! add an item in the right place (and replace the one that is there)
ssize_t add(const TYPE& item);
//! editItemAt() MUST NOT change the order of this item
TYPE& editItemAt(size_t index) {
return *( static_cast<TYPE *>(VectorImpl::editItemLocation(index)) );
}
//! merges a vector into this one
ssize_t merge(const Vector<TYPE>& vector);
ssize_t merge(const SortedVector<TYPE>& vector);
//! removes an item
ssize_t remove(const TYPE&);
//! remove several items
inline ssize_t removeItemsAt(size_t index, size_t count = 1);
//! remove one item
inline ssize_t removeAt(size_t index) { return removeItemsAt(index); }
protected:
virtual void do_construct(void* storage, size_t num) const;
virtual void do_destroy(void* storage, size_t num) const;
virtual void do_copy(void* dest, const void* from, size_t num) const;
virtual void do_splat(void* dest, const void* item, size_t num) const;
virtual void do_move_forward(void* dest, const void* from, size_t num) const;
virtual void do_move_backward(void* dest, const void* from, size_t num) const;
virtual int do_compare(const void* lhs, const void* rhs) const;
};
// ---------------------------------------------------------------------------
// No user serviceable parts from here...
// ---------------------------------------------------------------------------
template<class TYPE> inline
SortedVector<TYPE>::SortedVector()
: SortedVectorImpl(sizeof(TYPE),
((traits<TYPE>::has_trivial_ctor ? HAS_TRIVIAL_CTOR : 0)
|(traits<TYPE>::has_trivial_dtor ? HAS_TRIVIAL_DTOR : 0)
|(traits<TYPE>::has_trivial_copy ? HAS_TRIVIAL_COPY : 0)
|(traits<TYPE>::has_trivial_assign ? HAS_TRIVIAL_ASSIGN : 0))
)
{
}
template<class TYPE> inline
SortedVector<TYPE>::SortedVector(const SortedVector<TYPE>& rhs)
: SortedVectorImpl(rhs) {
}
template<class TYPE> inline
SortedVector<TYPE>::~SortedVector() {
finish_vector();
}
template<class TYPE> inline
SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) {
SortedVectorImpl::operator = (rhs);
return *this;
}
template<class TYPE> inline
const SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const {
SortedVectorImpl::operator = (rhs);
return *this;
}
template<class TYPE> inline
const TYPE* SortedVector<TYPE>::array() const {
return static_cast<const TYPE *>(arrayImpl());
}
template<class TYPE> inline
TYPE* SortedVector<TYPE>::editArray() {
return static_cast<TYPE *>(editArrayImpl());
}
template<class TYPE> inline
const TYPE& SortedVector<TYPE>::operator[](size_t index) const {
assert( index<size() );
return *(array() + index);
}
template<class TYPE> inline
const TYPE& SortedVector<TYPE>::itemAt(size_t index) const {
return operator[](index);
}
template<class TYPE> inline
const TYPE& SortedVector<TYPE>::mirrorItemAt(ssize_t index) const {
assert( (index>0 ? index : -index)<size() );
return *(array() + ((index<0) ? (size()-index) : index));
}
template<class TYPE> inline
const TYPE& SortedVector<TYPE>::top() const {
return *(array() + size() - 1);
}
template<class TYPE> inline
ssize_t SortedVector<TYPE>::add(const TYPE& item) {
return SortedVectorImpl::add(&item);
}
template<class TYPE> inline
ssize_t SortedVector<TYPE>::indexOf(const TYPE& item) const {
return SortedVectorImpl::indexOf(&item);
}
template<class TYPE> inline
size_t SortedVector<TYPE>::orderOf(const TYPE& item) const {
return SortedVectorImpl::orderOf(&item);
}
template<class TYPE> inline
ssize_t SortedVector<TYPE>::merge(const Vector<TYPE>& vector) {
return SortedVectorImpl::merge(reinterpret_cast<const VectorImpl&>(vector));
}
template<class TYPE> inline
ssize_t SortedVector<TYPE>::merge(const SortedVector<TYPE>& vector) {
return SortedVectorImpl::merge(reinterpret_cast<const SortedVectorImpl&>(vector));
}
template<class TYPE> inline
ssize_t SortedVector<TYPE>::remove(const TYPE& item) {
return SortedVectorImpl::remove(&item);
}
template<class TYPE> inline
ssize_t SortedVector<TYPE>::removeItemsAt(size_t index, size_t count) {
return VectorImpl::removeItemsAt(index, count);
}
// ---------------------------------------------------------------------------
template<class TYPE>
void SortedVector<TYPE>::do_construct(void* storage, size_t num) const {
construct_type( reinterpret_cast<TYPE*>(storage), num );
}
template<class TYPE>
void SortedVector<TYPE>::do_destroy(void* storage, size_t num) const {
destroy_type( reinterpret_cast<TYPE*>(storage), num );
}
template<class TYPE>
void SortedVector<TYPE>::do_copy(void* dest, const void* from, size_t num) const {
copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
}
template<class TYPE>
void SortedVector<TYPE>::do_splat(void* dest, const void* item, size_t num) const {
splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num );
}
template<class TYPE>
void SortedVector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const {
move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
}
template<class TYPE>
void SortedVector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const {
move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
}
template<class TYPE>
int SortedVector<TYPE>::do_compare(const void* lhs, const void* rhs) const {
return compare_type( *reinterpret_cast<const TYPE*>(lhs), *reinterpret_cast<const TYPE*>(rhs) );
}
}; // namespace android
// ---------------------------------------------------------------------------
#endif // ANDROID_SORTED_VECTOR_H