replicant-frameworks_native/libs/ui/tests/InputReader_test.cpp

3499 lines
140 KiB
C++
Raw Normal View History

//
// Copyright 2010 The Android Open Source Project
//
#include <ui/InputReader.h>
#include <utils/List.h>
#include <gtest/gtest.h>
#include <math.h>
namespace android {
// An arbitrary time value.
static const nsecs_t ARBITRARY_TIME = 1234;
// Arbitrary display properties.
static const int32_t DISPLAY_ID = 0;
static const int32_t DISPLAY_WIDTH = 480;
static const int32_t DISPLAY_HEIGHT = 800;
// Error tolerance for floating point assertions.
static const float EPSILON = 0.001f;
template<typename T>
static inline T min(T a, T b) {
return a < b ? a : b;
}
static inline float avg(float x, float y) {
return (x + y) / 2;
}
// --- FakeInputReaderPolicy ---
class FakeInputReaderPolicy : public InputReaderPolicyInterface {
struct DisplayInfo {
int32_t width;
int32_t height;
int32_t orientation;
};
KeyedVector<int32_t, DisplayInfo> mDisplayInfos;
bool mFilterTouchEvents;
bool mFilterJumpyTouchEvents;
KeyedVector<String8, Vector<VirtualKeyDefinition> > mVirtualKeyDefinitions;
Vector<String8> mExcludedDeviceNames;
protected:
virtual ~FakeInputReaderPolicy() { }
public:
FakeInputReaderPolicy() :
mFilterTouchEvents(false), mFilterJumpyTouchEvents(false) {
}
void removeDisplayInfo(int32_t displayId) {
mDisplayInfos.removeItem(displayId);
}
void setDisplayInfo(int32_t displayId, int32_t width, int32_t height, int32_t orientation) {
removeDisplayInfo(displayId);
DisplayInfo info;
info.width = width;
info.height = height;
info.orientation = orientation;
mDisplayInfos.add(displayId, info);
}
void setFilterTouchEvents(bool enabled) {
mFilterTouchEvents = enabled;
}
void setFilterJumpyTouchEvents(bool enabled) {
mFilterJumpyTouchEvents = enabled;
}
void addVirtualKeyDefinition(const String8& deviceName,
const VirtualKeyDefinition& definition) {
if (mVirtualKeyDefinitions.indexOfKey(deviceName) < 0) {
mVirtualKeyDefinitions.add(deviceName, Vector<VirtualKeyDefinition>());
}
mVirtualKeyDefinitions.editValueFor(deviceName).push(definition);
}
void addExcludedDeviceName(const String8& deviceName) {
mExcludedDeviceNames.push(deviceName);
}
private:
virtual bool getDisplayInfo(int32_t displayId,
int32_t* width, int32_t* height, int32_t* orientation) {
ssize_t index = mDisplayInfos.indexOfKey(displayId);
if (index >= 0) {
const DisplayInfo& info = mDisplayInfos.valueAt(index);
if (width) {
*width = info.width;
}
if (height) {
*height = info.height;
}
if (orientation) {
*orientation = info.orientation;
}
return true;
}
return false;
}
virtual bool filterTouchEvents() {
return mFilterTouchEvents;
}
virtual bool filterJumpyTouchEvents() {
return mFilterJumpyTouchEvents;
}
virtual void getVirtualKeyDefinitions(const String8& deviceName,
Vector<VirtualKeyDefinition>& outVirtualKeyDefinitions) {
ssize_t index = mVirtualKeyDefinitions.indexOfKey(deviceName);
if (index >= 0) {
outVirtualKeyDefinitions.appendVector(mVirtualKeyDefinitions.valueAt(index));
}
}
virtual void getExcludedDeviceNames(Vector<String8>& outExcludedDeviceNames) {
outExcludedDeviceNames.appendVector(mExcludedDeviceNames);
}
};
// --- FakeInputDispatcher ---
class FakeInputDispatcher : public InputDispatcherInterface {
public:
struct NotifyConfigurationChangedArgs {
nsecs_t eventTime;
};
struct NotifyKeyArgs {
nsecs_t eventTime;
int32_t deviceId;
int32_t source;
uint32_t policyFlags;
int32_t action;
int32_t flags;
int32_t keyCode;
int32_t scanCode;
int32_t metaState;
nsecs_t downTime;
};
struct NotifyMotionArgs {
nsecs_t eventTime;
int32_t deviceId;
int32_t source;
uint32_t policyFlags;
int32_t action;
int32_t flags;
int32_t metaState;
int32_t edgeFlags;
uint32_t pointerCount;
Vector<int32_t> pointerIds;
Vector<PointerCoords> pointerCoords;
float xPrecision;
float yPrecision;
nsecs_t downTime;
};
struct NotifySwitchArgs {
nsecs_t when;
int32_t switchCode;
int32_t switchValue;
uint32_t policyFlags;
};
private:
List<NotifyConfigurationChangedArgs> mNotifyConfigurationChangedArgs;
List<NotifyKeyArgs> mNotifyKeyArgs;
List<NotifyMotionArgs> mNotifyMotionArgs;
List<NotifySwitchArgs> mNotifySwitchArgs;
protected:
virtual ~FakeInputDispatcher() { }
public:
FakeInputDispatcher() {
}
void assertNotifyConfigurationChangedWasCalled(NotifyConfigurationChangedArgs* outArgs = NULL) {
ASSERT_FALSE(mNotifyConfigurationChangedArgs.empty())
<< "Expected notifyConfigurationChanged() to have been called.";
if (outArgs) {
*outArgs = *mNotifyConfigurationChangedArgs.begin();
}
mNotifyConfigurationChangedArgs.erase(mNotifyConfigurationChangedArgs.begin());
}
void assertNotifyKeyWasCalled(NotifyKeyArgs* outArgs = NULL) {
ASSERT_FALSE(mNotifyKeyArgs.empty())
<< "Expected notifyKey() to have been called.";
if (outArgs) {
*outArgs = *mNotifyKeyArgs.begin();
}
mNotifyKeyArgs.erase(mNotifyKeyArgs.begin());
}
void assertNotifyKeyWasNotCalled() {
ASSERT_TRUE(mNotifyKeyArgs.empty())
<< "Expected notifyKey() to not have been called.";
}
void assertNotifyMotionWasCalled(NotifyMotionArgs* outArgs = NULL) {
ASSERT_FALSE(mNotifyMotionArgs.empty())
<< "Expected notifyMotion() to have been called.";
if (outArgs) {
*outArgs = *mNotifyMotionArgs.begin();
}
mNotifyMotionArgs.erase(mNotifyMotionArgs.begin());
}
void assertNotifyMotionWasNotCalled() {
ASSERT_TRUE(mNotifyMotionArgs.empty())
<< "Expected notifyMotion() to not have been called.";
}
void assertNotifySwitchWasCalled(NotifySwitchArgs* outArgs = NULL) {
ASSERT_FALSE(mNotifySwitchArgs.empty())
<< "Expected notifySwitch() to have been called.";
if (outArgs) {
*outArgs = *mNotifySwitchArgs.begin();
}
mNotifySwitchArgs.erase(mNotifySwitchArgs.begin());
}
private:
virtual void notifyConfigurationChanged(nsecs_t eventTime) {
NotifyConfigurationChangedArgs args;
args.eventTime = eventTime;
mNotifyConfigurationChangedArgs.push_back(args);
}
virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, int32_t source,
uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode,
int32_t scanCode, int32_t metaState, nsecs_t downTime) {
NotifyKeyArgs args;
args.eventTime = eventTime;
args.deviceId = deviceId;
args.source = source;
args.policyFlags = policyFlags;
args.action = action;
args.flags = flags;
args.keyCode = keyCode;
args.scanCode = scanCode;
args.metaState = metaState;
args.downTime = downTime;
mNotifyKeyArgs.push_back(args);
}
virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, int32_t source,
uint32_t policyFlags, int32_t action, int32_t flags,
int32_t metaState, int32_t edgeFlags,
uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
float xPrecision, float yPrecision, nsecs_t downTime) {
NotifyMotionArgs args;
args.eventTime = eventTime;
args.deviceId = deviceId;
args.source = source;
args.policyFlags = policyFlags;
args.action = action;
args.flags = flags;
args.metaState = metaState;
args.edgeFlags = edgeFlags;
args.pointerCount = pointerCount;
args.pointerIds.clear();
args.pointerIds.appendArray(pointerIds, pointerCount);
args.pointerCoords.clear();
args.pointerCoords.appendArray(pointerCoords, pointerCount);
args.xPrecision = xPrecision;
args.yPrecision = yPrecision;
args.downTime = downTime;
mNotifyMotionArgs.push_back(args);
}
virtual void notifySwitch(nsecs_t when,
int32_t switchCode, int32_t switchValue, uint32_t policyFlags) {
NotifySwitchArgs args;
args.when = when;
args.switchCode = switchCode;
args.switchValue = switchValue;
args.policyFlags = policyFlags;
mNotifySwitchArgs.push_back(args);
}
virtual void dump(String8& dump) {
ADD_FAILURE() << "Should never be called by input reader.";
}
virtual void dispatchOnce() {
ADD_FAILURE() << "Should never be called by input reader.";
}
virtual int32_t injectInputEvent(const InputEvent* event,
int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis) {
ADD_FAILURE() << "Should never be called by input reader.";
return INPUT_EVENT_INJECTION_FAILED;
}
virtual void setInputWindows(const Vector<InputWindow>& inputWindows) {
ADD_FAILURE() << "Should never be called by input reader.";
}
virtual void setFocusedApplication(const InputApplication* inputApplication) {
ADD_FAILURE() << "Should never be called by input reader.";
}
virtual void setInputDispatchMode(bool enabled, bool frozen) {
ADD_FAILURE() << "Should never be called by input reader.";
}
virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
const sp<InputChannel>& toChannel) {
ADD_FAILURE() << "Should never be called by input reader.";
return 0;
}
virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel, bool monitor) {
ADD_FAILURE() << "Should never be called by input reader.";
return 0;
}
virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel) {
ADD_FAILURE() << "Should never be called by input reader.";
return 0;
}
};
// --- FakeEventHub ---
class FakeEventHub : public EventHubInterface {
struct KeyInfo {
int32_t keyCode;
uint32_t flags;
};
struct Device {
String8 name;
uint32_t classes;
PropertyMap configuration;
KeyedVector<int, RawAbsoluteAxisInfo> axes;
KeyedVector<int32_t, int32_t> keyCodeStates;
KeyedVector<int32_t, int32_t> scanCodeStates;
KeyedVector<int32_t, int32_t> switchStates;
KeyedVector<int32_t, KeyInfo> keys;
KeyedVector<int32_t, bool> leds;
Device(const String8& name, uint32_t classes) :
name(name), classes(classes) {
}
};
KeyedVector<int32_t, Device*> mDevices;
Vector<String8> mExcludedDevices;
List<RawEvent> mEvents;
protected:
virtual ~FakeEventHub() {
for (size_t i = 0; i < mDevices.size(); i++) {
delete mDevices.valueAt(i);
}
}
public:
FakeEventHub() { }
void addDevice(int32_t deviceId, const String8& name, uint32_t classes) {
Device* device = new Device(name, classes);
mDevices.add(deviceId, device);
enqueueEvent(ARBITRARY_TIME, deviceId, EventHubInterface::DEVICE_ADDED, 0, 0, 0, 0);
}
void removeDevice(int32_t deviceId) {
delete mDevices.valueFor(deviceId);
mDevices.removeItem(deviceId);
enqueueEvent(ARBITRARY_TIME, deviceId, EventHubInterface::DEVICE_REMOVED, 0, 0, 0, 0);
}
void finishDeviceScan() {
enqueueEvent(ARBITRARY_TIME, 0, EventHubInterface::FINISHED_DEVICE_SCAN, 0, 0, 0, 0);
}
void addConfigurationProperty(int32_t deviceId, const String8& key, const String8& value) {
Device* device = getDevice(deviceId);
device->configuration.addProperty(key, value);
}
void addAxis(int32_t deviceId, int axis,
int32_t minValue, int32_t maxValue, int flat, int fuzz) {
Device* device = getDevice(deviceId);
RawAbsoluteAxisInfo info;
info.valid = true;
info.minValue = minValue;
info.maxValue = maxValue;
info.flat = flat;
info.fuzz = fuzz;
device->axes.add(axis, info);
}
void setKeyCodeState(int32_t deviceId, int32_t keyCode, int32_t state) {
Device* device = getDevice(deviceId);
device->keyCodeStates.replaceValueFor(keyCode, state);
}
void setScanCodeState(int32_t deviceId, int32_t scanCode, int32_t state) {
Device* device = getDevice(deviceId);
device->scanCodeStates.replaceValueFor(scanCode, state);
}
void setSwitchState(int32_t deviceId, int32_t switchCode, int32_t state) {
Device* device = getDevice(deviceId);
device->switchStates.replaceValueFor(switchCode, state);
}
void addKey(int32_t deviceId, int32_t scanCode, int32_t keyCode, uint32_t flags) {
Device* device = getDevice(deviceId);
KeyInfo info;
info.keyCode = keyCode;
info.flags = flags;
device->keys.add(scanCode, info);
}
void addLed(int32_t deviceId, int32_t led, bool initialState) {
Device* device = getDevice(deviceId);
device->leds.add(led, initialState);
}
bool getLedState(int32_t deviceId, int32_t led) {
Device* device = getDevice(deviceId);
return device->leds.valueFor(led);
}
Vector<String8>& getExcludedDevices() {
return mExcludedDevices;
}
void enqueueEvent(nsecs_t when, int32_t deviceId, int32_t type,
int32_t scanCode, int32_t keyCode, int32_t value, uint32_t flags) {
RawEvent event;
event.when = when;
event.deviceId = deviceId;
event.type = type;
event.scanCode = scanCode;
event.keyCode = keyCode;
event.value = value;
event.flags = flags;
mEvents.push_back(event);
}
void assertQueueIsEmpty() {
ASSERT_EQ(size_t(0), mEvents.size())
<< "Expected the event queue to be empty (fully consumed).";
}
private:
Device* getDevice(int32_t deviceId) const {
ssize_t index = mDevices.indexOfKey(deviceId);
return index >= 0 ? mDevices.valueAt(index) : NULL;
}
virtual uint32_t getDeviceClasses(int32_t deviceId) const {
Device* device = getDevice(deviceId);
return device ? device->classes : 0;
}
virtual String8 getDeviceName(int32_t deviceId) const {
Device* device = getDevice(deviceId);
return device ? device->name : String8("unknown");
}
virtual void getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
Device* device = getDevice(deviceId);
if (device) {
*outConfiguration = device->configuration;
}
}
virtual status_t getAbsoluteAxisInfo(int32_t deviceId, int axis,
RawAbsoluteAxisInfo* outAxisInfo) const {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->axes.indexOfKey(axis);
if (index >= 0) {
*outAxisInfo = device->axes.valueAt(index);
return OK;
}
}
return -1;
}
virtual status_t scancodeToKeycode(int32_t deviceId, int scancode,
int32_t* outKeycode, uint32_t* outFlags) const {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->keys.indexOfKey(scancode);
if (index >= 0) {
if (outKeycode) {
*outKeycode = device->keys.valueAt(index).keyCode;
}
if (outFlags) {
*outFlags = device->keys.valueAt(index).flags;
}
return OK;
}
}
return NAME_NOT_FOUND;
}
virtual void addExcludedDevice(const char* deviceName) {
mExcludedDevices.add(String8(deviceName));
}
virtual bool getEvent(RawEvent* outEvent) {
if (mEvents.empty()) {
return false;
}
*outEvent = *mEvents.begin();
mEvents.erase(mEvents.begin());
return true;
}
virtual int32_t getScanCodeState(int32_t deviceId, int32_t scanCode) const {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->scanCodeStates.indexOfKey(scanCode);
if (index >= 0) {
return device->scanCodeStates.valueAt(index);
}
}
return AKEY_STATE_UNKNOWN;
}
virtual int32_t getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->keyCodeStates.indexOfKey(keyCode);
if (index >= 0) {
return device->keyCodeStates.valueAt(index);
}
}
return AKEY_STATE_UNKNOWN;
}
virtual int32_t getSwitchState(int32_t deviceId, int32_t sw) const {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->switchStates.indexOfKey(sw);
if (index >= 0) {
return device->switchStates.valueAt(index);
}
}
return AKEY_STATE_UNKNOWN;
}
virtual bool markSupportedKeyCodes(int32_t deviceId, size_t numCodes, const int32_t* keyCodes,
uint8_t* outFlags) const {
bool result = false;
Device* device = getDevice(deviceId);
if (device) {
for (size_t i = 0; i < numCodes; i++) {
for (size_t j = 0; j < device->keys.size(); j++) {
if (keyCodes[i] == device->keys.valueAt(j).keyCode) {
outFlags[i] = 1;
result = true;
}
}
}
}
return result;
}
virtual bool hasLed(int32_t deviceId, int32_t led) const {
Device* device = getDevice(deviceId);
return device && device->leds.indexOfKey(led) >= 0;
}
virtual void setLedState(int32_t deviceId, int32_t led, bool on) {
Device* device = getDevice(deviceId);
if (device) {
ssize_t index = device->leds.indexOfKey(led);
if (index >= 0) {
device->leds.replaceValueAt(led, on);
} else {
ADD_FAILURE()
<< "Attempted to set the state of an LED that the EventHub declared "
"was not present. led=" << led;
}
}
}
virtual void dump(String8& dump) {
}
};
// --- FakeInputReaderContext ---
class FakeInputReaderContext : public InputReaderContext {
sp<EventHubInterface> mEventHub;
sp<InputReaderPolicyInterface> mPolicy;
sp<InputDispatcherInterface> mDispatcher;
int32_t mGlobalMetaState;
bool mUpdateGlobalMetaStateWasCalled;
public:
FakeInputReaderContext(const sp<EventHubInterface>& eventHub,
const sp<InputReaderPolicyInterface>& policy,
const sp<InputDispatcherInterface>& dispatcher) :
mEventHub(eventHub), mPolicy(policy), mDispatcher(dispatcher),
mGlobalMetaState(0) {
}
virtual ~FakeInputReaderContext() { }
void assertUpdateGlobalMetaStateWasCalled() {
ASSERT_TRUE(mUpdateGlobalMetaStateWasCalled)
<< "Expected updateGlobalMetaState() to have been called.";
mUpdateGlobalMetaStateWasCalled = false;
}
void setGlobalMetaState(int32_t state) {
mGlobalMetaState = state;
}
private:
virtual void updateGlobalMetaState() {
mUpdateGlobalMetaStateWasCalled = true;
}
virtual int32_t getGlobalMetaState() {
return mGlobalMetaState;
}
virtual EventHubInterface* getEventHub() {
return mEventHub.get();
}
virtual InputReaderPolicyInterface* getPolicy() {
return mPolicy.get();
}
virtual InputDispatcherInterface* getDispatcher() {
return mDispatcher.get();
}
};
// --- FakeInputMapper ---
class FakeInputMapper : public InputMapper {
uint32_t mSources;
int32_t mKeyboardType;
int32_t mMetaState;
KeyedVector<int32_t, int32_t> mKeyCodeStates;
KeyedVector<int32_t, int32_t> mScanCodeStates;
KeyedVector<int32_t, int32_t> mSwitchStates;
Vector<int32_t> mSupportedKeyCodes;
RawEvent mLastEvent;
bool mConfigureWasCalled;
bool mResetWasCalled;
bool mProcessWasCalled;
public:
FakeInputMapper(InputDevice* device, uint32_t sources) :
InputMapper(device),
mSources(sources), mKeyboardType(AINPUT_KEYBOARD_TYPE_NONE),
mMetaState(0),
mConfigureWasCalled(false), mResetWasCalled(false), mProcessWasCalled(false) {
}
virtual ~FakeInputMapper() { }
void setKeyboardType(int32_t keyboardType) {
mKeyboardType = keyboardType;
}
void setMetaState(int32_t metaState) {
mMetaState = metaState;
}
void assertConfigureWasCalled() {
ASSERT_TRUE(mConfigureWasCalled)
<< "Expected configure() to have been called.";
mConfigureWasCalled = false;
}
void assertResetWasCalled() {
ASSERT_TRUE(mResetWasCalled)
<< "Expected reset() to have been called.";
mResetWasCalled = false;
}
void assertProcessWasCalled(RawEvent* outLastEvent = NULL) {
ASSERT_TRUE(mProcessWasCalled)
<< "Expected process() to have been called.";
if (outLastEvent) {
*outLastEvent = mLastEvent;
}
mProcessWasCalled = false;
}
void setKeyCodeState(int32_t keyCode, int32_t state) {
mKeyCodeStates.replaceValueFor(keyCode, state);
}
void setScanCodeState(int32_t scanCode, int32_t state) {
mScanCodeStates.replaceValueFor(scanCode, state);
}
void setSwitchState(int32_t switchCode, int32_t state) {
mSwitchStates.replaceValueFor(switchCode, state);
}
void addSupportedKeyCode(int32_t keyCode) {
mSupportedKeyCodes.add(keyCode);
}
private:
virtual uint32_t getSources() {
return mSources;
}
virtual void populateDeviceInfo(InputDeviceInfo* deviceInfo) {
InputMapper::populateDeviceInfo(deviceInfo);
if (mKeyboardType != AINPUT_KEYBOARD_TYPE_NONE) {
deviceInfo->setKeyboardType(mKeyboardType);
}
}
virtual void configure() {
mConfigureWasCalled = true;
}
virtual void reset() {
mResetWasCalled = true;
}
virtual void process(const RawEvent* rawEvent) {
mLastEvent = *rawEvent;
mProcessWasCalled = true;
}
virtual int32_t getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
ssize_t index = mKeyCodeStates.indexOfKey(keyCode);
return index >= 0 ? mKeyCodeStates.valueAt(index) : AKEY_STATE_UNKNOWN;
}
virtual int32_t getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
ssize_t index = mScanCodeStates.indexOfKey(scanCode);
return index >= 0 ? mScanCodeStates.valueAt(index) : AKEY_STATE_UNKNOWN;
}
virtual int32_t getSwitchState(uint32_t sourceMask, int32_t switchCode) {
ssize_t index = mSwitchStates.indexOfKey(switchCode);
return index >= 0 ? mSwitchStates.valueAt(index) : AKEY_STATE_UNKNOWN;
}
virtual bool markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags) {
bool result = false;
for (size_t i = 0; i < numCodes; i++) {
for (size_t j = 0; j < mSupportedKeyCodes.size(); j++) {
if (keyCodes[i] == mSupportedKeyCodes[j]) {
outFlags[i] = 1;
result = true;
}
}
}
return result;
}
virtual int32_t getMetaState() {
return mMetaState;
}
};
// --- InstrumentedInputReader ---
class InstrumentedInputReader : public InputReader {
InputDevice* mNextDevice;
public:
InstrumentedInputReader(const sp<EventHubInterface>& eventHub,
const sp<InputReaderPolicyInterface>& policy,
const sp<InputDispatcherInterface>& dispatcher) :
InputReader(eventHub, policy, dispatcher) {
}
virtual ~InstrumentedInputReader() {
if (mNextDevice) {
delete mNextDevice;
}
}
void setNextDevice(InputDevice* device) {
mNextDevice = device;
}
protected:
virtual InputDevice* createDevice(int32_t deviceId, const String8& name, uint32_t classes) {
if (mNextDevice) {
InputDevice* device = mNextDevice;
mNextDevice = NULL;
return device;
}
return InputReader::createDevice(deviceId, name, classes);
}
friend class InputReaderTest;
};
// --- InputReaderTest ---
class InputReaderTest : public testing::Test {
protected:
sp<FakeInputDispatcher> mFakeDispatcher;
sp<FakeInputReaderPolicy> mFakePolicy;
sp<FakeEventHub> mFakeEventHub;
sp<InstrumentedInputReader> mReader;
virtual void SetUp() {
mFakeEventHub = new FakeEventHub();
mFakePolicy = new FakeInputReaderPolicy();
mFakeDispatcher = new FakeInputDispatcher();
mReader = new InstrumentedInputReader(mFakeEventHub, mFakePolicy, mFakeDispatcher);
}
virtual void TearDown() {
mReader.clear();
mFakeDispatcher.clear();
mFakePolicy.clear();
mFakeEventHub.clear();
}
void addDevice(int32_t deviceId, const String8& name, uint32_t classes) {
mFakeEventHub->addDevice(deviceId, name, classes);
mFakeEventHub->finishDeviceScan();
mReader->loopOnce();
mReader->loopOnce();
mFakeEventHub->assertQueueIsEmpty();
}
FakeInputMapper* addDeviceWithFakeInputMapper(int32_t deviceId,
const String8& name, uint32_t classes, uint32_t sources) {
InputDevice* device = new InputDevice(mReader.get(), deviceId, name);
FakeInputMapper* mapper = new FakeInputMapper(device, sources);
device->addMapper(mapper);
mReader->setNextDevice(device);
addDevice(deviceId, name, classes);
return mapper;
}
};
TEST_F(InputReaderTest, GetInputConfiguration_WhenNoDevices_ReturnsDefaults) {
InputConfiguration config;
mReader->getInputConfiguration(&config);
ASSERT_EQ(InputConfiguration::KEYBOARD_NOKEYS, config.keyboard);
ASSERT_EQ(InputConfiguration::NAVIGATION_NONAV, config.navigation);
ASSERT_EQ(InputConfiguration::TOUCHSCREEN_NOTOUCH, config.touchScreen);
}
TEST_F(InputReaderTest, GetInputConfiguration_WhenAlphabeticKeyboardPresent_ReturnsQwertyKeyboard) {
ASSERT_NO_FATAL_FAILURE(addDevice(0, String8("keyboard"),
INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_ALPHAKEY));
InputConfiguration config;
mReader->getInputConfiguration(&config);
ASSERT_EQ(InputConfiguration::KEYBOARD_QWERTY, config.keyboard);
ASSERT_EQ(InputConfiguration::NAVIGATION_NONAV, config.navigation);
ASSERT_EQ(InputConfiguration::TOUCHSCREEN_NOTOUCH, config.touchScreen);
}
TEST_F(InputReaderTest, GetInputConfiguration_WhenTouchScreenPresent_ReturnsFingerTouchScreen) {
ASSERT_NO_FATAL_FAILURE(addDevice(0, String8("touchscreen"),
INPUT_DEVICE_CLASS_TOUCHSCREEN));
InputConfiguration config;
mReader->getInputConfiguration(&config);
ASSERT_EQ(InputConfiguration::KEYBOARD_NOKEYS, config.keyboard);
ASSERT_EQ(InputConfiguration::NAVIGATION_NONAV, config.navigation);
ASSERT_EQ(InputConfiguration::TOUCHSCREEN_FINGER, config.touchScreen);
}
TEST_F(InputReaderTest, GetInputConfiguration_WhenTrackballPresent_ReturnsTrackballNavigation) {
ASSERT_NO_FATAL_FAILURE(addDevice(0, String8("trackball"),
INPUT_DEVICE_CLASS_TRACKBALL));
InputConfiguration config;
mReader->getInputConfiguration(&config);
ASSERT_EQ(InputConfiguration::KEYBOARD_NOKEYS, config.keyboard);
ASSERT_EQ(InputConfiguration::NAVIGATION_TRACKBALL, config.navigation);
ASSERT_EQ(InputConfiguration::TOUCHSCREEN_NOTOUCH, config.touchScreen);
}
TEST_F(InputReaderTest, GetInputConfiguration_WhenDPadPresent_ReturnsDPadNavigation) {
ASSERT_NO_FATAL_FAILURE(addDevice(0, String8("dpad"),
INPUT_DEVICE_CLASS_DPAD));
InputConfiguration config;
mReader->getInputConfiguration(&config);
ASSERT_EQ(InputConfiguration::KEYBOARD_NOKEYS, config.keyboard);
ASSERT_EQ(InputConfiguration::NAVIGATION_DPAD, config.navigation);
ASSERT_EQ(InputConfiguration::TOUCHSCREEN_NOTOUCH, config.touchScreen);
}
TEST_F(InputReaderTest, GetInputDeviceInfo_WhenDeviceIdIsValid) {
ASSERT_NO_FATAL_FAILURE(addDevice(1, String8("keyboard"),
INPUT_DEVICE_CLASS_KEYBOARD));
InputDeviceInfo info;
status_t result = mReader->getInputDeviceInfo(1, &info);
ASSERT_EQ(OK, result);
ASSERT_EQ(1, info.getId());
ASSERT_STREQ("keyboard", info.getName().string());
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC, info.getKeyboardType());
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, info.getSources());
ASSERT_EQ(size_t(0), info.getMotionRanges().size());
}
TEST_F(InputReaderTest, GetInputDeviceInfo_WhenDeviceIdIsInvalid) {
InputDeviceInfo info;
status_t result = mReader->getInputDeviceInfo(-1, &info);
ASSERT_EQ(NAME_NOT_FOUND, result);
}
TEST_F(InputReaderTest, GetInputDeviceInfo_WhenDeviceIdIsIgnored) {
addDevice(1, String8("ignored"), 0); // no classes so device will be ignored
InputDeviceInfo info;
status_t result = mReader->getInputDeviceInfo(1, &info);
ASSERT_EQ(NAME_NOT_FOUND, result);
}
TEST_F(InputReaderTest, GetInputDeviceIds) {
ASSERT_NO_FATAL_FAILURE(addDevice(1, String8("keyboard"),
INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_ALPHAKEY));
ASSERT_NO_FATAL_FAILURE(addDevice(2, String8("trackball"),
INPUT_DEVICE_CLASS_TRACKBALL));
Vector<int32_t> ids;
mReader->getInputDeviceIds(ids);
ASSERT_EQ(size_t(2), ids.size());
ASSERT_EQ(1, ids[0]);
ASSERT_EQ(2, ids[1]);
}
TEST_F(InputReaderTest, GetKeyCodeState_ForwardsRequestsToMappers) {
FakeInputMapper* mapper = NULL;
ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"),
INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD));
mapper->setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN);
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(0,
AINPUT_SOURCE_ANY, AKEYCODE_A))
<< "Should return unknown when the device id is >= 0 but unknown.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(1,
AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown when the device id is valid but the sources are not supported by the device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getKeyCodeState(1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return value provided by mapper when device id is valid and the device supports some of the sources.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(-1,
AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown when the device id is < 0 but the sources are not supported by any device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getKeyCodeState(-1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
}
TEST_F(InputReaderTest, GetScanCodeState_ForwardsRequestsToMappers) {
FakeInputMapper* mapper = NULL;
ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"),
INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD));
mapper->setScanCodeState(KEY_A, AKEY_STATE_DOWN);
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(0,
AINPUT_SOURCE_ANY, KEY_A))
<< "Should return unknown when the device id is >= 0 but unknown.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(1,
AINPUT_SOURCE_TRACKBALL, KEY_A))
<< "Should return unknown when the device id is valid but the sources are not supported by the device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getScanCodeState(1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, KEY_A))
<< "Should return value provided by mapper when device id is valid and the device supports some of the sources.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(-1,
AINPUT_SOURCE_TRACKBALL, KEY_A))
<< "Should return unknown when the device id is < 0 but the sources are not supported by any device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getScanCodeState(-1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, KEY_A))
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
}
TEST_F(InputReaderTest, GetSwitchState_ForwardsRequestsToMappers) {
FakeInputMapper* mapper = NULL;
ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"),
INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD));
mapper->setSwitchState(SW_LID, AKEY_STATE_DOWN);
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(0,
AINPUT_SOURCE_ANY, SW_LID))
<< "Should return unknown when the device id is >= 0 but unknown.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(1,
AINPUT_SOURCE_TRACKBALL, SW_LID))
<< "Should return unknown when the device id is valid but the sources are not supported by the device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getSwitchState(1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, SW_LID))
<< "Should return value provided by mapper when device id is valid and the device supports some of the sources.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(-1,
AINPUT_SOURCE_TRACKBALL, SW_LID))
<< "Should return unknown when the device id is < 0 but the sources are not supported by any device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getSwitchState(-1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, SW_LID))
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
}
TEST_F(InputReaderTest, MarkSupportedKeyCodes_ForwardsRequestsToMappers) {
FakeInputMapper* mapper = NULL;
ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"),
INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD));
mapper->addSupportedKeyCode(AKEYCODE_A);
mapper->addSupportedKeyCode(AKEYCODE_B);
const int32_t keyCodes[4] = { AKEYCODE_A, AKEYCODE_B, AKEYCODE_1, AKEYCODE_2 };
uint8_t flags[4] = { 0, 0, 0, 1 };
ASSERT_FALSE(mReader->hasKeys(0, AINPUT_SOURCE_ANY, 4, keyCodes, flags))
<< "Should return false when device id is >= 0 but unknown.";
ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]);
flags[3] = 1;
ASSERT_FALSE(mReader->hasKeys(1, AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags))
<< "Should return false when device id is valid but the sources are not supported by the device.";
ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]);
flags[3] = 1;
ASSERT_TRUE(mReader->hasKeys(1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags))
<< "Should return value provided by mapper when device id is valid and the device supports some of the sources.";
ASSERT_TRUE(flags[0] && flags[1] && !flags[2] && !flags[3]);
flags[3] = 1;
ASSERT_FALSE(mReader->hasKeys(-1, AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags))
<< "Should return false when the device id is < 0 but the sources are not supported by any device.";
ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]);
flags[3] = 1;
ASSERT_TRUE(mReader->hasKeys(-1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags))
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
ASSERT_TRUE(flags[0] && flags[1] && !flags[2] && !flags[3]);
}
TEST_F(InputReaderTest, LoopOnce_WhenDeviceScanFinished_SendsConfigurationChanged) {
addDevice(1, String8("ignored"), INPUT_DEVICE_CLASS_KEYBOARD);
FakeInputDispatcher::NotifyConfigurationChangedArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyConfigurationChangedWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
}
TEST_F(InputReaderTest, LoopOnce_ForwardsRawEventsToMappers) {
FakeInputMapper* mapper = NULL;
ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"),
INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD));
mFakeEventHub->enqueueEvent(0, 1, EV_KEY, KEY_A, AKEYCODE_A, 1, POLICY_FLAG_WAKE);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeEventHub->assertQueueIsEmpty());
RawEvent event;
ASSERT_NO_FATAL_FAILURE(mapper->assertProcessWasCalled(&event));
ASSERT_EQ(0, event.when);
ASSERT_EQ(1, event.deviceId);
ASSERT_EQ(EV_KEY, event.type);
ASSERT_EQ(KEY_A, event.scanCode);
ASSERT_EQ(AKEYCODE_A, event.keyCode);
ASSERT_EQ(1, event.value);
ASSERT_EQ(POLICY_FLAG_WAKE, event.flags);
}
// --- InputDeviceTest ---
class InputDeviceTest : public testing::Test {
protected:
static const char* DEVICE_NAME;
static const int32_t DEVICE_ID;
sp<FakeEventHub> mFakeEventHub;
sp<FakeInputReaderPolicy> mFakePolicy;
sp<FakeInputDispatcher> mFakeDispatcher;
FakeInputReaderContext* mFakeContext;
InputDevice* mDevice;
virtual void SetUp() {
mFakeEventHub = new FakeEventHub();
mFakePolicy = new FakeInputReaderPolicy();
mFakeDispatcher = new FakeInputDispatcher();
mFakeContext = new FakeInputReaderContext(mFakeEventHub, mFakePolicy, mFakeDispatcher);
mDevice = new InputDevice(mFakeContext, DEVICE_ID, String8(DEVICE_NAME));
}
virtual void TearDown() {
delete mDevice;
delete mFakeContext;
mFakeDispatcher.clear();
mFakePolicy.clear();
mFakeEventHub.clear();
}
};
const char* InputDeviceTest::DEVICE_NAME = "device";
const int32_t InputDeviceTest::DEVICE_ID = 1;
TEST_F(InputDeviceTest, ImmutableProperties) {
ASSERT_EQ(DEVICE_ID, mDevice->getId());
ASSERT_STREQ(DEVICE_NAME, mDevice->getName());
}
TEST_F(InputDeviceTest, WhenNoMappersAreRegistered_DeviceIsIgnored) {
// Configuration.
mDevice->configure();
// Metadata.
ASSERT_TRUE(mDevice->isIgnored());
ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, mDevice->getSources());
InputDeviceInfo info;
mDevice->getDeviceInfo(&info);
ASSERT_EQ(DEVICE_ID, info.getId());
ASSERT_STREQ(DEVICE_NAME, info.getName().string());
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NONE, info.getKeyboardType());
ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, info.getSources());
// State queries.
ASSERT_EQ(0, mDevice->getMetaState());
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_KEYBOARD, 0))
<< "Ignored device should return unknown key code state.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getScanCodeState(AINPUT_SOURCE_KEYBOARD, 0))
<< "Ignored device should return unknown scan code state.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getSwitchState(AINPUT_SOURCE_KEYBOARD, 0))
<< "Ignored device should return unknown switch state.";
const int32_t keyCodes[2] = { AKEYCODE_A, AKEYCODE_B };
uint8_t flags[2] = { 0, 1 };
ASSERT_FALSE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_KEYBOARD, 2, keyCodes, flags))
<< "Ignored device should never mark any key codes.";
ASSERT_EQ(0, flags[0]) << "Flag for unsupported key should be unchanged.";
ASSERT_EQ(1, flags[1]) << "Flag for unsupported key should be unchanged.";
// Reset.
mDevice->reset();
}
TEST_F(InputDeviceTest, WhenMappersAreRegistered_DeviceIsNotIgnoredAndForwardsRequestsToMappers) {
// Configuration.
mFakeEventHub->addConfigurationProperty(DEVICE_ID, String8("key"), String8("value"));
FakeInputMapper* mapper1 = new FakeInputMapper(mDevice, AINPUT_SOURCE_KEYBOARD);
mapper1->setKeyboardType(AINPUT_KEYBOARD_TYPE_ALPHABETIC);
mapper1->setMetaState(AMETA_ALT_ON);
mapper1->addSupportedKeyCode(AKEYCODE_A);
mapper1->addSupportedKeyCode(AKEYCODE_B);
mapper1->setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN);
mapper1->setKeyCodeState(AKEYCODE_B, AKEY_STATE_UP);
mapper1->setScanCodeState(2, AKEY_STATE_DOWN);
mapper1->setScanCodeState(3, AKEY_STATE_UP);
mapper1->setSwitchState(4, AKEY_STATE_DOWN);
mDevice->addMapper(mapper1);
FakeInputMapper* mapper2 = new FakeInputMapper(mDevice, AINPUT_SOURCE_TOUCHSCREEN);
mapper2->setMetaState(AMETA_SHIFT_ON);
mDevice->addMapper(mapper2);
mDevice->configure();
String8 propertyValue;
ASSERT_TRUE(mDevice->getConfiguration().tryGetProperty(String8("key"), propertyValue))
<< "Device should have read configuration during configuration phase.";
ASSERT_STREQ("value", propertyValue.string());
ASSERT_NO_FATAL_FAILURE(mapper1->assertConfigureWasCalled());
ASSERT_NO_FATAL_FAILURE(mapper2->assertConfigureWasCalled());
// Metadata.
ASSERT_FALSE(mDevice->isIgnored());
ASSERT_EQ(uint32_t(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TOUCHSCREEN), mDevice->getSources());
InputDeviceInfo info;
mDevice->getDeviceInfo(&info);
ASSERT_EQ(DEVICE_ID, info.getId());
ASSERT_STREQ(DEVICE_NAME, info.getName().string());
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_ALPHABETIC, info.getKeyboardType());
ASSERT_EQ(uint32_t(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TOUCHSCREEN), info.getSources());
// State queries.
ASSERT_EQ(AMETA_ALT_ON | AMETA_SHIFT_ON, mDevice->getMetaState())
<< "Should query mappers and combine meta states.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown key code state when source not supported.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getScanCodeState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown scan code state when source not supported.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getSwitchState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown switch state when source not supported.";
ASSERT_EQ(AKEY_STATE_DOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_KEYBOARD, AKEYCODE_A))
<< "Should query mapper when source is supported.";
ASSERT_EQ(AKEY_STATE_UP, mDevice->getScanCodeState(AINPUT_SOURCE_KEYBOARD, 3))
<< "Should query mapper when source is supported.";
ASSERT_EQ(AKEY_STATE_DOWN, mDevice->getSwitchState(AINPUT_SOURCE_KEYBOARD, 4))
<< "Should query mapper when source is supported.";
const int32_t keyCodes[4] = { AKEYCODE_A, AKEYCODE_B, AKEYCODE_1, AKEYCODE_2 };
uint8_t flags[4] = { 0, 0, 0, 1 };
ASSERT_FALSE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags))
<< "Should do nothing when source is unsupported.";
ASSERT_EQ(0, flags[0]) << "Flag should be unchanged when source is unsupported.";
ASSERT_EQ(0, flags[1]) << "Flag should be unchanged when source is unsupported.";
ASSERT_EQ(0, flags[2]) << "Flag should be unchanged when source is unsupported.";
ASSERT_EQ(1, flags[3]) << "Flag should be unchanged when source is unsupported.";
ASSERT_TRUE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_KEYBOARD, 4, keyCodes, flags))
<< "Should query mapper when source is supported.";
ASSERT_EQ(1, flags[0]) << "Flag for supported key should be set.";
ASSERT_EQ(1, flags[1]) << "Flag for supported key should be set.";
ASSERT_EQ(0, flags[2]) << "Flag for unsupported key should be unchanged.";
ASSERT_EQ(1, flags[3]) << "Flag for unsupported key should be unchanged.";
// Event handling.
RawEvent event;
mDevice->process(&event);
ASSERT_NO_FATAL_FAILURE(mapper1->assertProcessWasCalled());
ASSERT_NO_FATAL_FAILURE(mapper2->assertProcessWasCalled());
// Reset.
mDevice->reset();
ASSERT_NO_FATAL_FAILURE(mapper1->assertResetWasCalled());
ASSERT_NO_FATAL_FAILURE(mapper2->assertResetWasCalled());
}
// --- InputMapperTest ---
class InputMapperTest : public testing::Test {
protected:
static const char* DEVICE_NAME;
static const int32_t DEVICE_ID;
sp<FakeEventHub> mFakeEventHub;
sp<FakeInputReaderPolicy> mFakePolicy;
sp<FakeInputDispatcher> mFakeDispatcher;
FakeInputReaderContext* mFakeContext;
InputDevice* mDevice;
virtual void SetUp() {
mFakeEventHub = new FakeEventHub();
mFakePolicy = new FakeInputReaderPolicy();
mFakeDispatcher = new FakeInputDispatcher();
mFakeContext = new FakeInputReaderContext(mFakeEventHub, mFakePolicy, mFakeDispatcher);
mDevice = new InputDevice(mFakeContext, DEVICE_ID, String8(DEVICE_NAME));
mFakeEventHub->addDevice(DEVICE_ID, String8(DEVICE_NAME), 0);
}
virtual void TearDown() {
delete mDevice;
delete mFakeContext;
mFakeDispatcher.clear();
mFakePolicy.clear();
mFakeEventHub.clear();
}
void addConfigurationProperty(const char* key, const char* value) {
mFakeEventHub->addConfigurationProperty(DEVICE_ID, String8(key), String8(value));
}
void addMapperAndConfigure(InputMapper* mapper) {
mDevice->addMapper(mapper);
mDevice->configure();
}
static void process(InputMapper* mapper, nsecs_t when, int32_t deviceId, int32_t type,
int32_t scanCode, int32_t keyCode, int32_t value, uint32_t flags) {
RawEvent event;
event.when = when;
event.deviceId = deviceId;
event.type = type;
event.scanCode = scanCode;
event.keyCode = keyCode;
event.value = value;
event.flags = flags;
mapper->process(&event);
}
static void assertMotionRange(const InputDeviceInfo& info,
int32_t rangeType, float min, float max, float flat, float fuzz) {
const InputDeviceInfo::MotionRange* range = info.getMotionRange(rangeType);
ASSERT_TRUE(range != NULL) << "Range: " << rangeType;
ASSERT_NEAR(min, range->min, EPSILON) << "Range: " << rangeType;
ASSERT_NEAR(max, range->max, EPSILON) << "Range: " << rangeType;
ASSERT_NEAR(flat, range->flat, EPSILON) << "Range: " << rangeType;
ASSERT_NEAR(fuzz, range->fuzz, EPSILON) << "Range: " << rangeType;
}
static void assertPointerCoords(const PointerCoords& coords,
float x, float y, float pressure, float size,
float touchMajor, float touchMinor, float toolMajor, float toolMinor,
float orientation) {
ASSERT_NEAR(x, coords.x, 1);
ASSERT_NEAR(y, coords.y, 1);
ASSERT_NEAR(pressure, coords.pressure, EPSILON);
ASSERT_NEAR(size, coords.size, EPSILON);
ASSERT_NEAR(touchMajor, coords.touchMajor, 1);
ASSERT_NEAR(touchMinor, coords.touchMinor, 1);
ASSERT_NEAR(toolMajor, coords.toolMajor, 1);
ASSERT_NEAR(toolMinor, coords.toolMinor, 1);
ASSERT_NEAR(orientation, coords.orientation, EPSILON);
}
};
const char* InputMapperTest::DEVICE_NAME = "device";
const int32_t InputMapperTest::DEVICE_ID = 1;
// --- SwitchInputMapperTest ---
class SwitchInputMapperTest : public InputMapperTest {
protected:
};
TEST_F(SwitchInputMapperTest, GetSources) {
SwitchInputMapper* mapper = new SwitchInputMapper(mDevice);
addMapperAndConfigure(mapper);
ASSERT_EQ(uint32_t(0), mapper->getSources());
}
TEST_F(SwitchInputMapperTest, GetSwitchState) {
SwitchInputMapper* mapper = new SwitchInputMapper(mDevice);
addMapperAndConfigure(mapper);
mFakeEventHub->setSwitchState(DEVICE_ID, SW_LID, 1);
ASSERT_EQ(1, mapper->getSwitchState(AINPUT_SOURCE_ANY, SW_LID));
mFakeEventHub->setSwitchState(DEVICE_ID, SW_LID, 0);
ASSERT_EQ(0, mapper->getSwitchState(AINPUT_SOURCE_ANY, SW_LID));
}
TEST_F(SwitchInputMapperTest, Process) {
SwitchInputMapper* mapper = new SwitchInputMapper(mDevice);
addMapperAndConfigure(mapper);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SW, SW_LID, 0, 1, 0);
FakeInputDispatcher::NotifySwitchArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifySwitchWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.when);
ASSERT_EQ(SW_LID, args.switchCode);
ASSERT_EQ(1, args.switchValue);
ASSERT_EQ(uint32_t(0), args.policyFlags);
}
// --- KeyboardInputMapperTest ---
class KeyboardInputMapperTest : public InputMapperTest {
protected:
void testDPadKeyRotation(KeyboardInputMapper* mapper,
int32_t originalScanCode, int32_t originalKeyCode, int32_t rotatedKeyCode);
};
void KeyboardInputMapperTest::testDPadKeyRotation(KeyboardInputMapper* mapper,
int32_t originalScanCode, int32_t originalKeyCode, int32_t rotatedKeyCode) {
FakeInputDispatcher::NotifyKeyArgs args;
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, originalScanCode, originalKeyCode, 1, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(originalScanCode, args.scanCode);
ASSERT_EQ(rotatedKeyCode, args.keyCode);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, originalScanCode, originalKeyCode, 0, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(originalScanCode, args.scanCode);
ASSERT_EQ(rotatedKeyCode, args.keyCode);
}
TEST_F(KeyboardInputMapperTest, GetSources) {
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, mapper->getSources());
}
TEST_F(KeyboardInputMapperTest, Process_SimpleKeyPress) {
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
// Key down.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_HOME, AKEYCODE_HOME, 1, POLICY_FLAG_WAKE);
FakeInputDispatcher::NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Key up.
process(mapper, ARBITRARY_TIME + 1, DEVICE_ID,
EV_KEY, KEY_HOME, AKEYCODE_HOME, 0, POLICY_FLAG_WAKE);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
}
TEST_F(KeyboardInputMapperTest, Reset_WhenKeysAreNotDown_DoesNotSynthesizeKeyUp) {
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
// Key down.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_HOME, AKEYCODE_HOME, 1, POLICY_FLAG_WAKE);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
// Key up.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_HOME, AKEYCODE_HOME, 0, POLICY_FLAG_WAKE);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
// Reset. Since no keys still down, should not synthesize any key ups.
mapper->reset();
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
}
TEST_F(KeyboardInputMapperTest, Reset_WhenKeysAreDown_SynthesizesKeyUps) {
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
// Metakey down.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_LEFTSHIFT, AKEYCODE_SHIFT_LEFT, 1, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
// Key down.
process(mapper, ARBITRARY_TIME + 1, DEVICE_ID,
EV_KEY, KEY_A, AKEYCODE_A, 1, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
// Reset. Since two keys are still down, should synthesize two key ups in reverse order.
mapper->reset();
FakeInputDispatcher::NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEYCODE_A, args.keyCode);
ASSERT_EQ(KEY_A, args.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(uint32_t(0), args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME + 1, args.downTime);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEYCODE_SHIFT_LEFT, args.keyCode);
ASSERT_EQ(KEY_LEFTSHIFT, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(uint32_t(0), args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME + 1, args.downTime);
// And that's it.
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
}
TEST_F(KeyboardInputMapperTest, Process_ShouldUpdateMetaState) {
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
// Initial metastate.
ASSERT_EQ(AMETA_NONE, mapper->getMetaState());
// Metakey down.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_LEFTSHIFT, AKEYCODE_SHIFT_LEFT, 1, 0);
FakeInputDispatcher::NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper->getMetaState());
ASSERT_NO_FATAL_FAILURE(mFakeContext->assertUpdateGlobalMetaStateWasCalled());
// Key down.
process(mapper, ARBITRARY_TIME + 1, DEVICE_ID,
EV_KEY, KEY_A, AKEYCODE_A, 1, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper->getMetaState());
// Key up.
process(mapper, ARBITRARY_TIME + 2, DEVICE_ID,
EV_KEY, KEY_A, AKEYCODE_A, 0, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper->getMetaState());
// Metakey up.
process(mapper, ARBITRARY_TIME + 3, DEVICE_ID,
EV_KEY, KEY_LEFTSHIFT, AKEYCODE_SHIFT_LEFT, 0, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AMETA_NONE, mapper->getMetaState());
ASSERT_NO_FATAL_FAILURE(mFakeContext->assertUpdateGlobalMetaStateWasCalled());
}
TEST_F(KeyboardInputMapperTest, Process_WhenNotOrientationAware_ShouldNotRotateDPad) {
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
mFakePolicy->setDisplayInfo(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
InputReaderPolicyInterface::ROTATION_90);
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_RIGHT));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_DOWN));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_LEFT));
}
TEST_F(KeyboardInputMapperTest, Process_WhenOrientationAware_ShouldRotateDPad) {
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addConfigurationProperty("keyboard.orientationAware", "1");
addMapperAndConfigure(mapper);
mFakePolicy->setDisplayInfo(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
InputReaderPolicyInterface::ROTATION_0);
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_RIGHT));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_DOWN));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_LEFT));
mFakePolicy->setDisplayInfo(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
InputReaderPolicyInterface::ROTATION_90);
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN));
mFakePolicy->setDisplayInfo(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
InputReaderPolicyInterface::ROTATION_180);
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_DOWN));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_LEFT));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_UP));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_RIGHT));
mFakePolicy->setDisplayInfo(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
InputReaderPolicyInterface::ROTATION_270);
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_RIGHT));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_DOWN));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_LEFT));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_UP));
// Special case: if orientation changes while key is down, we still emit the same keycode
// in the key up as we did in the key down.
FakeInputDispatcher::NotifyKeyArgs args;
mFakePolicy->setDisplayInfo(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
InputReaderPolicyInterface::ROTATION_270);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, KEY_UP, AKEYCODE_DPAD_UP, 1, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(KEY_UP, args.scanCode);
ASSERT_EQ(AKEYCODE_DPAD_RIGHT, args.keyCode);
mFakePolicy->setDisplayInfo(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
InputReaderPolicyInterface::ROTATION_180);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, KEY_UP, AKEYCODE_DPAD_UP, 0, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(KEY_UP, args.scanCode);
ASSERT_EQ(AKEYCODE_DPAD_RIGHT, args.keyCode);
}
TEST_F(KeyboardInputMapperTest, GetKeyCodeState) {
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
mFakeEventHub->setKeyCodeState(DEVICE_ID, AKEYCODE_A, 1);
ASSERT_EQ(1, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A));
mFakeEventHub->setKeyCodeState(DEVICE_ID, AKEYCODE_A, 0);
ASSERT_EQ(0, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A));
}
TEST_F(KeyboardInputMapperTest, GetScanCodeState) {
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
mFakeEventHub->setScanCodeState(DEVICE_ID, KEY_A, 1);
ASSERT_EQ(1, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_A));
mFakeEventHub->setScanCodeState(DEVICE_ID, KEY_A, 0);
ASSERT_EQ(0, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_A));
}
TEST_F(KeyboardInputMapperTest, MarkSupportedKeyCodes) {
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
mFakeEventHub->addKey(DEVICE_ID, KEY_A, AKEYCODE_A, 0);
const int32_t keyCodes[2] = { AKEYCODE_A, AKEYCODE_B };
uint8_t flags[2] = { 0, 0 };
ASSERT_TRUE(mapper->markSupportedKeyCodes(AINPUT_SOURCE_ANY, 1, keyCodes, flags));
ASSERT_TRUE(flags[0]);
ASSERT_FALSE(flags[1]);
}
TEST_F(KeyboardInputMapperTest, Process_LockedKeysShouldToggleMetaStateAndLeds) {
mFakeEventHub->addLed(DEVICE_ID, LED_CAPSL, true /*initially on*/);
mFakeEventHub->addLed(DEVICE_ID, LED_NUML, false /*initially off*/);
mFakeEventHub->addLed(DEVICE_ID, LED_SCROLLL, false /*initially off*/);
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice,
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
addMapperAndConfigure(mapper);
// Initialization should have turned all of the lights off.
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
// Toggle caps lock on.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_CAPSLOCK, AKEYCODE_CAPS_LOCK, 1, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_CAPSLOCK, AKEYCODE_CAPS_LOCK, 0, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper->getMetaState());
// Toggle num lock on.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_NUMLOCK, AKEYCODE_NUM_LOCK, 1, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_NUMLOCK, AKEYCODE_NUM_LOCK, 0, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_CAPS_LOCK_ON | AMETA_NUM_LOCK_ON, mapper->getMetaState());
// Toggle caps lock off.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_CAPSLOCK, AKEYCODE_CAPS_LOCK, 1, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_CAPSLOCK, AKEYCODE_CAPS_LOCK, 1, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_NUM_LOCK_ON, mapper->getMetaState());
// Toggle scroll lock on.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_SCROLLLOCK, AKEYCODE_SCROLL_LOCK, 1, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_SCROLLLOCK, AKEYCODE_SCROLL_LOCK, 0, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_NUM_LOCK_ON | AMETA_SCROLL_LOCK_ON, mapper->getMetaState());
// Toggle num lock off.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_NUMLOCK, AKEYCODE_NUM_LOCK, 1, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_NUMLOCK, AKEYCODE_NUM_LOCK, 0, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_SCROLL_LOCK_ON, mapper->getMetaState());
// Toggle scroll lock off.
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_SCROLLLOCK, AKEYCODE_SCROLL_LOCK, 1, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID,
EV_KEY, KEY_SCROLLLOCK, AKEYCODE_SCROLL_LOCK, 0, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_NONE, mapper->getMetaState());
}
// --- TrackballInputMapperTest ---
class TrackballInputMapperTest : public InputMapperTest {
protected:
static const int32_t TRACKBALL_MOVEMENT_THRESHOLD;
void testMotionRotation(TrackballInputMapper* mapper,
int32_t originalX, int32_t originalY, int32_t rotatedX, int32_t rotatedY);
};
const int32_t TrackballInputMapperTest::TRACKBALL_MOVEMENT_THRESHOLD = 6;
void TrackballInputMapperTest::testMotionRotation(TrackballInputMapper* mapper,
int32_t originalX, int32_t originalY, int32_t rotatedX, int32_t rotatedY) {
FakeInputDispatcher::NotifyMotionArgs args;
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_X, 0, originalX, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_Y, 0, originalY, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
float(rotatedX) / TRACKBALL_MOVEMENT_THRESHOLD,
float(rotatedY) / TRACKBALL_MOVEMENT_THRESHOLD,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
}
TEST_F(TrackballInputMapperTest, GetSources) {
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice);
addMapperAndConfigure(mapper);
ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, mapper->getSources());
}
TEST_F(TrackballInputMapperTest, PopulateDeviceInfo) {
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice);
addMapperAndConfigure(mapper);
InputDeviceInfo info;
mapper->populateDeviceInfo(&info);
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info, AINPUT_MOTION_RANGE_X,
-1.0f, 1.0f, 0.0f, 1.0f / TRACKBALL_MOVEMENT_THRESHOLD));
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info, AINPUT_MOTION_RANGE_Y,
-1.0f, 1.0f, 0.0f, 1.0f / TRACKBALL_MOVEMENT_THRESHOLD));
}
TEST_F(TrackballInputMapperTest, Process_ShouldSetAllFieldsAndIncludeGlobalMetaState) {
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice);
addMapperAndConfigure(mapper);
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
FakeInputDispatcher::NotifyMotionArgs args;
// Button press.
// Mostly testing non x/y behavior here so we don't need to check again elsewhere.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 1, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, args.source);
ASSERT_EQ(uint32_t(0), args.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(0, args.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(0, args.edgeFlags);
ASSERT_EQ(uint32_t(1), args.pointerCount);
ASSERT_EQ(0, args.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.xPrecision);
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.yPrecision);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Button release. Should have same down time.
process(mapper, ARBITRARY_TIME + 1, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 0, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime);
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, args.source);
ASSERT_EQ(uint32_t(0), args.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
ASSERT_EQ(0, args.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(0, args.edgeFlags);
ASSERT_EQ(uint32_t(1), args.pointerCount);
ASSERT_EQ(0, args.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.xPrecision);
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.yPrecision);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
}
TEST_F(TrackballInputMapperTest, Process_ShouldHandleIndependentXYUpdates) {
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice);
addMapperAndConfigure(mapper);
FakeInputDispatcher::NotifyMotionArgs args;
// Motion in X but not Y.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_X, 0, 1, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
1.0f / TRACKBALL_MOVEMENT_THRESHOLD, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
// Motion in Y but not X.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_Y, 0, -2, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NEAR(0.0f, args.pointerCoords[0].x, EPSILON);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
0.0f, -2.0f / TRACKBALL_MOVEMENT_THRESHOLD, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
}
TEST_F(TrackballInputMapperTest, Process_ShouldHandleIndependentButtonUpdates) {
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice);
addMapperAndConfigure(mapper);
FakeInputDispatcher::NotifyMotionArgs args;
// Button press without following sync.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 1, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
// Button release without following sync.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 0, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
}
TEST_F(TrackballInputMapperTest, Process_ShouldHandleCombinedXYAndButtonUpdates) {
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice);
addMapperAndConfigure(mapper);
FakeInputDispatcher::NotifyMotionArgs args;
// Combined X, Y and Button.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_X, 0, 1, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_Y, 0, -2, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 1, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
1.0f / TRACKBALL_MOVEMENT_THRESHOLD, -2.0f / TRACKBALL_MOVEMENT_THRESHOLD,
1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
// Move X, Y a bit while pressed.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_X, 0, 2, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_Y, 0, 1, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
2.0f / TRACKBALL_MOVEMENT_THRESHOLD, 1.0f / TRACKBALL_MOVEMENT_THRESHOLD,
1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
// Release Button.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 0, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
}
TEST_F(TrackballInputMapperTest, Reset_WhenButtonIsNotDown_ShouldNotSynthesizeButtonUp) {
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice);
addMapperAndConfigure(mapper);
FakeInputDispatcher::NotifyMotionArgs args;
// Button press.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 1, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
// Button release.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 0, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
// Reset. Should not synthesize button up since button is not pressed.
mapper->reset();
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled());
}
TEST_F(TrackballInputMapperTest, Reset_WhenButtonIsDown_ShouldSynthesizeButtonUp) {
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice);
addMapperAndConfigure(mapper);
FakeInputDispatcher::NotifyMotionArgs args;
// Button press.
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 1, 0);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
// Reset. Should synthesize button up.
mapper->reset();
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
}
TEST_F(TrackballInputMapperTest, Process_WhenNotOrientationAware_ShouldNotRotateMotions) {
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice);
addMapperAndConfigure(mapper);
mFakePolicy->setDisplayInfo(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
InputReaderPolicyInterface::ROTATION_90);
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, -1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, 1));
}
TEST_F(TrackballInputMapperTest, Process_WhenOrientationAware_ShouldRotateMotions) {
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice);
addConfigurationProperty("trackball.orientationAware", "1");
addMapperAndConfigure(mapper);
mFakePolicy->setDisplayInfo(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
InputReaderPolicyInterface::ROTATION_0);
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, -1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, 1));
mFakePolicy->setDisplayInfo(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
InputReaderPolicyInterface::ROTATION_90);
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 0, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, -1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, -1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 0, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, 1, 1));
mFakePolicy->setDisplayInfo(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
InputReaderPolicyInterface::ROTATION_180);
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, -1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, -1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, -1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, 1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, 1, -1));
mFakePolicy->setDisplayInfo(DISPLAY_ID,
DISPLAY_WIDTH, DISPLAY_HEIGHT,
InputReaderPolicyInterface::ROTATION_270);
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, -1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, -1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 0, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, 1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 1, 0));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, 1, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 0, -1));
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, -1));
}
// --- TouchInputMapperTest ---
class TouchInputMapperTest : public InputMapperTest {
protected:
static const int32_t RAW_X_MIN;
static const int32_t RAW_X_MAX;
static const int32_t RAW_Y_MIN;
static const int32_t RAW_Y_MAX;
static const int32_t RAW_TOUCH_MIN;
static const int32_t RAW_TOUCH_MAX;
static const int32_t RAW_TOOL_MIN;
static const int32_t RAW_TOOL_MAX;
static const int32_t RAW_PRESSURE_MIN;
static const int32_t RAW_PRESSURE_MAX;
static const int32_t RAW_ORIENTATION_MIN;
static const int32_t RAW_ORIENTATION_MAX;
static const int32_t RAW_ID_MIN;
static const int32_t RAW_ID_MAX;
static const float X_PRECISION;
static const float Y_PRECISION;
static const VirtualKeyDefinition VIRTUAL_KEYS[2];
enum Axes {
POSITION = 1 << 0,
TOUCH = 1 << 1,
TOOL = 1 << 2,
PRESSURE = 1 << 3,
ORIENTATION = 1 << 4,
MINOR = 1 << 5,
ID = 1 << 6,
};
void prepareDisplay(int32_t orientation);
void prepareVirtualKeys();
int32_t toRawX(float displayX);
int32_t toRawY(float displayY);
float toDisplayX(int32_t rawX);
float toDisplayY(int32_t rawY);
};
const int32_t TouchInputMapperTest::RAW_X_MIN = 25;
const int32_t TouchInputMapperTest::RAW_X_MAX = 1020;
const int32_t TouchInputMapperTest::RAW_Y_MIN = 30;
const int32_t TouchInputMapperTest::RAW_Y_MAX = 1010;
const int32_t TouchInputMapperTest::RAW_TOUCH_MIN = 0;
const int32_t TouchInputMapperTest::RAW_TOUCH_MAX = 31;
const int32_t TouchInputMapperTest::RAW_TOOL_MIN = 0;
const int32_t TouchInputMapperTest::RAW_TOOL_MAX = 15;
const int32_t TouchInputMapperTest::RAW_PRESSURE_MIN = RAW_TOUCH_MIN;
const int32_t TouchInputMapperTest::RAW_PRESSURE_MAX = RAW_TOUCH_MAX;
const int32_t TouchInputMapperTest::RAW_ORIENTATION_MIN = -7;
const int32_t TouchInputMapperTest::RAW_ORIENTATION_MAX = 7;
const int32_t TouchInputMapperTest::RAW_ID_MIN = 0;
const int32_t TouchInputMapperTest::RAW_ID_MAX = 9;
const float TouchInputMapperTest::X_PRECISION = float(RAW_X_MAX - RAW_X_MIN) / DISPLAY_WIDTH;
const float TouchInputMapperTest::Y_PRECISION = float(RAW_Y_MAX - RAW_Y_MIN) / DISPLAY_HEIGHT;
const VirtualKeyDefinition TouchInputMapperTest::VIRTUAL_KEYS[2] = {
{ KEY_HOME, 60, DISPLAY_HEIGHT + 15, 20, 20 },
{ KEY_MENU, DISPLAY_HEIGHT - 60, DISPLAY_WIDTH + 15, 20, 20 },
};
void TouchInputMapperTest::prepareDisplay(int32_t orientation) {
mFakePolicy->setDisplayInfo(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, orientation);
}
void TouchInputMapperTest::prepareVirtualKeys() {
mFakePolicy->addVirtualKeyDefinition(String8(DEVICE_NAME), VIRTUAL_KEYS[0]);
mFakePolicy->addVirtualKeyDefinition(String8(DEVICE_NAME), VIRTUAL_KEYS[1]);
mFakeEventHub->addKey(DEVICE_ID, KEY_HOME, AKEYCODE_HOME, POLICY_FLAG_WAKE);
mFakeEventHub->addKey(DEVICE_ID, KEY_MENU, AKEYCODE_MENU, POLICY_FLAG_WAKE);
}
int32_t TouchInputMapperTest::toRawX(float displayX) {
return int32_t(displayX * (RAW_X_MAX - RAW_X_MIN) / DISPLAY_WIDTH + RAW_X_MIN);
}
int32_t TouchInputMapperTest::toRawY(float displayY) {
return int32_t(displayY * (RAW_Y_MAX - RAW_Y_MIN) / DISPLAY_HEIGHT + RAW_Y_MIN);
}
float TouchInputMapperTest::toDisplayX(int32_t rawX) {
return float(rawX - RAW_X_MIN) * DISPLAY_WIDTH / (RAW_X_MAX - RAW_X_MIN);
}
float TouchInputMapperTest::toDisplayY(int32_t rawY) {
return float(rawY - RAW_Y_MIN) * DISPLAY_HEIGHT / (RAW_Y_MAX - RAW_Y_MIN);
}
// --- SingleTouchInputMapperTest ---
class SingleTouchInputMapperTest : public TouchInputMapperTest {
protected:
void prepareAxes(int axes);
void processDown(SingleTouchInputMapper* mapper, int32_t x, int32_t y);
void processMove(SingleTouchInputMapper* mapper, int32_t x, int32_t y);
void processUp(SingleTouchInputMapper* mappery);
void processPressure(SingleTouchInputMapper* mapper, int32_t pressure);
void processToolMajor(SingleTouchInputMapper* mapper, int32_t toolMajor);
void processSync(SingleTouchInputMapper* mapper);
};
void SingleTouchInputMapperTest::prepareAxes(int axes) {
if (axes & POSITION) {
mFakeEventHub->addAxis(DEVICE_ID, ABS_X, RAW_X_MIN, RAW_X_MAX, 0, 0);
mFakeEventHub->addAxis(DEVICE_ID, ABS_Y, RAW_Y_MIN, RAW_Y_MAX, 0, 0);
}
if (axes & PRESSURE) {
mFakeEventHub->addAxis(DEVICE_ID, ABS_PRESSURE, RAW_PRESSURE_MIN, RAW_PRESSURE_MAX, 0, 0);
}
if (axes & TOOL) {
mFakeEventHub->addAxis(DEVICE_ID, ABS_TOOL_WIDTH, RAW_TOOL_MIN, RAW_TOOL_MAX, 0, 0);
}
}
void SingleTouchInputMapperTest::processDown(SingleTouchInputMapper* mapper, int32_t x, int32_t y) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_TOUCH, 0, 1, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_X, 0, x, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_Y, 0, y, 0);
}
void SingleTouchInputMapperTest::processMove(SingleTouchInputMapper* mapper, int32_t x, int32_t y) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_X, 0, x, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_Y, 0, y, 0);
}
void SingleTouchInputMapperTest::processUp(SingleTouchInputMapper* mapper) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_TOUCH, 0, 0, 0);
}
void SingleTouchInputMapperTest::processPressure(
SingleTouchInputMapper* mapper, int32_t pressure) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_PRESSURE, 0, pressure, 0);
}
void SingleTouchInputMapperTest::processToolMajor(
SingleTouchInputMapper* mapper, int32_t toolMajor) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_TOOL_WIDTH, 0, toolMajor, 0);
}
void SingleTouchInputMapperTest::processSync(SingleTouchInputMapper* mapper) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0);
}
TEST_F(SingleTouchInputMapperTest, GetSources_WhenDisplayTypeIsTouchPad_ReturnsTouchPad) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
prepareAxes(POSITION);
addConfigurationProperty("touch.displayType", "touchPad");
addMapperAndConfigure(mapper);
ASSERT_EQ(AINPUT_SOURCE_TOUCHPAD, mapper->getSources());
}
TEST_F(SingleTouchInputMapperTest, GetSources_WhenDisplayTypeIsTouchScreen_ReturnsTouchScreen) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
prepareAxes(POSITION);
addConfigurationProperty("touch.displayType", "touchScreen");
addMapperAndConfigure(mapper);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, mapper->getSources());
}
TEST_F(SingleTouchInputMapperTest, GetKeyCodeState) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
// Unknown key.
ASSERT_EQ(AKEY_STATE_UNKNOWN, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A));
// Virtual key is down.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
ASSERT_EQ(AKEY_STATE_VIRTUAL, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_HOME));
// Virtual key is up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
ASSERT_EQ(AKEY_STATE_UP, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_HOME));
}
TEST_F(SingleTouchInputMapperTest, GetScanCodeState) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
// Unknown key.
ASSERT_EQ(AKEY_STATE_UNKNOWN, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_A));
// Virtual key is down.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
ASSERT_EQ(AKEY_STATE_VIRTUAL, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_HOME));
// Virtual key is up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
ASSERT_EQ(AKEY_STATE_UP, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_HOME));
}
TEST_F(SingleTouchInputMapperTest, MarkSupportedKeyCodes) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
const int32_t keys[2] = { AKEYCODE_HOME, AKEYCODE_A };
uint8_t flags[2] = { 0, 0 };
ASSERT_TRUE(mapper->markSupportedKeyCodes(AINPUT_SOURCE_ANY, 2, keys, flags));
ASSERT_TRUE(flags[0]);
ASSERT_FALSE(flags[1]);
}
TEST_F(SingleTouchInputMapperTest, Reset_WhenVirtualKeysAreDown_SendsUp) {
// Note: Ideally we should send cancels but the implementation is more straightforward
// with up and this will only happen if a device is forcibly removed.
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
// Press virtual key.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
// Reset. Since key is down, synthesize key up.
mapper->reset();
FakeInputDispatcher::NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
//ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
}
TEST_F(SingleTouchInputMapperTest, Reset_WhenNothingIsPressed_NothingMuchHappens) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
// Press virtual key.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
// Release virtual key.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
// Reset. Since no key is down, nothing happens.
mapper->reset();
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenVirtualKeyIsPressedAndReleasedNormally_SendsKeyDownAndKeyUp) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
FakeInputDispatcher::NotifyKeyArgs args;
// Press virtual key.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Release virtual key.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Should not have sent any motions.
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenVirtualKeyIsPressedAndMovedOutOfBounds_SendsKeyDownAndKeyCancel) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
FakeInputDispatcher::NotifyKeyArgs keyArgs;
// Press virtual key.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(ARBITRARY_TIME, keyArgs.eventTime);
ASSERT_EQ(DEVICE_ID, keyArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, keyArgs.source);
ASSERT_EQ(POLICY_FLAG_VIRTUAL, keyArgs.policyFlags);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, keyArgs.flags);
ASSERT_EQ(AKEYCODE_HOME, keyArgs.keyCode);
ASSERT_EQ(KEY_HOME, keyArgs.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, keyArgs.metaState);
ASSERT_EQ(ARBITRARY_TIME, keyArgs.downTime);
// Move out of bounds. This should generate a cancel and a pointer down since we moved
// into the display area.
y -= 100;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(ARBITRARY_TIME, keyArgs.eventTime);
ASSERT_EQ(DEVICE_ID, keyArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, keyArgs.source);
ASSERT_EQ(POLICY_FLAG_VIRTUAL, keyArgs.policyFlags);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY
| AKEY_EVENT_FLAG_CANCELED, keyArgs.flags);
ASSERT_EQ(AKEYCODE_HOME, keyArgs.keyCode);
ASSERT_EQ(KEY_HOME, keyArgs.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, keyArgs.metaState);
ASSERT_EQ(ARBITRARY_TIME, keyArgs.downTime);
FakeInputDispatcher::NotifyMotionArgs motionArgs;
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Keep moving out of bounds. Should generate a pointer move.
y -= 50;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Release out of bounds. Should generate a pointer up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenTouchStartsOutsideDisplayAndMovesIn_SendsDownAsTouchEntersDisplay) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
FakeInputDispatcher::NotifyMotionArgs motionArgs;
// Initially go down out of bounds.
int32_t x = -10;
int32_t y = -10;
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled());
// Move into the display area. Should generate a pointer down.
x = 50;
y = 75;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Release. Should generate a pointer up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_NormalSingleTouchGesture) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
FakeInputDispatcher::NotifyMotionArgs motionArgs;
// Down.
int32_t x = 100;
int32_t y = 125;
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Move.
x += 50;
y += 75;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenNotOrientationAware_DoesNotRotateMotions) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
prepareAxes(POSITION);
addConfigurationProperty("touch.orientationAware", "0");
addMapperAndConfigure(mapper);
FakeInputDispatcher::NotifyMotionArgs args;
// Rotation 90.
prepareDisplay(InputReaderPolicyInterface::ROTATION_90);
processDown(mapper, toRawX(50), toRawY(75));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(50, args.pointerCoords[0].x, 1);
ASSERT_NEAR(75, args.pointerCoords[0].y, 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenOrientationAware_RotatesMotions) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
prepareAxes(POSITION);
addMapperAndConfigure(mapper);
FakeInputDispatcher::NotifyMotionArgs args;
// Rotation 0.
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
processDown(mapper, toRawX(50), toRawY(75));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(50, args.pointerCoords[0].x, 1);
ASSERT_NEAR(75, args.pointerCoords[0].y, 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled());
// Rotation 90.
prepareDisplay(InputReaderPolicyInterface::ROTATION_90);
processDown(mapper, toRawX(50), toRawY(75));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(75, args.pointerCoords[0].x, 1);
ASSERT_NEAR(DISPLAY_WIDTH - 50, args.pointerCoords[0].y, 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled());
// Rotation 180.
prepareDisplay(InputReaderPolicyInterface::ROTATION_180);
processDown(mapper, toRawX(50), toRawY(75));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(DISPLAY_WIDTH - 50, args.pointerCoords[0].x, 1);
ASSERT_NEAR(DISPLAY_HEIGHT - 75, args.pointerCoords[0].y, 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled());
// Rotation 270.
prepareDisplay(InputReaderPolicyInterface::ROTATION_270);
processDown(mapper, toRawX(50), toRawY(75));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(DISPLAY_HEIGHT - 75, args.pointerCoords[0].x, 1);
ASSERT_NEAR(50, args.pointerCoords[0].y, 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_AllAxes_DefaultCalibration) {
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice);
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
prepareAxes(POSITION | PRESSURE | TOOL);
addMapperAndConfigure(mapper);
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawPressure = 10;
int32_t rawToolMajor = 12;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float pressure = float(rawPressure) / RAW_PRESSURE_MAX;
float size = float(rawToolMajor) / RAW_TOOL_MAX;
float tool = min(DISPLAY_WIDTH, DISPLAY_HEIGHT) * size;
float touch = min(tool * pressure, tool);
processDown(mapper, rawX, rawY);
processPressure(mapper, rawPressure);
processToolMajor(mapper, rawToolMajor);
processSync(mapper);
FakeInputDispatcher::NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, pressure, size, touch, touch, tool, tool, 0));
}
// --- MultiTouchInputMapperTest ---
class MultiTouchInputMapperTest : public TouchInputMapperTest {
protected:
void prepareAxes(int axes);
void processPosition(MultiTouchInputMapper* mapper, int32_t x, int32_t y);
void processTouchMajor(MultiTouchInputMapper* mapper, int32_t touchMajor);
void processTouchMinor(MultiTouchInputMapper* mapper, int32_t touchMinor);
void processToolMajor(MultiTouchInputMapper* mapper, int32_t toolMajor);
void processToolMinor(MultiTouchInputMapper* mapper, int32_t toolMinor);
void processOrientation(MultiTouchInputMapper* mapper, int32_t orientation);
void processPressure(MultiTouchInputMapper* mapper, int32_t pressure);
void processId(MultiTouchInputMapper* mapper, int32_t id);
void processMTSync(MultiTouchInputMapper* mapper);
void processSync(MultiTouchInputMapper* mapper);
};
void MultiTouchInputMapperTest::prepareAxes(int axes) {
if (axes & POSITION) {
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX, 0, 0);
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX, 0, 0);
}
if (axes & TOUCH) {
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_TOUCH_MAJOR, RAW_TOUCH_MIN, RAW_TOUCH_MAX, 0, 0);
if (axes & MINOR) {
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_TOUCH_MINOR,
RAW_TOUCH_MIN, RAW_TOUCH_MAX, 0, 0);
}
}
if (axes & TOOL) {
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_WIDTH_MAJOR, RAW_TOOL_MIN, RAW_TOOL_MAX, 0, 0);
if (axes & MINOR) {
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_WIDTH_MINOR,
RAW_TOOL_MAX, RAW_TOOL_MAX, 0, 0);
}
}
if (axes & ORIENTATION) {
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_ORIENTATION,
RAW_ORIENTATION_MIN, RAW_ORIENTATION_MAX, 0, 0);
}
if (axes & PRESSURE) {
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_PRESSURE,
RAW_PRESSURE_MIN, RAW_PRESSURE_MAX, 0, 0);
}
if (axes & ID) {
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_TRACKING_ID,
RAW_ID_MIN, RAW_ID_MAX, 0, 0);
}
}
void MultiTouchInputMapperTest::processPosition(
MultiTouchInputMapper* mapper, int32_t x, int32_t y) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_POSITION_X, 0, x, 0);
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_POSITION_Y, 0, y, 0);
}
void MultiTouchInputMapperTest::processTouchMajor(
MultiTouchInputMapper* mapper, int32_t touchMajor) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_TOUCH_MAJOR, 0, touchMajor, 0);
}
void MultiTouchInputMapperTest::processTouchMinor(
MultiTouchInputMapper* mapper, int32_t touchMinor) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_TOUCH_MINOR, 0, touchMinor, 0);
}
void MultiTouchInputMapperTest::processToolMajor(
MultiTouchInputMapper* mapper, int32_t toolMajor) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_WIDTH_MAJOR, 0, toolMajor, 0);
}
void MultiTouchInputMapperTest::processToolMinor(
MultiTouchInputMapper* mapper, int32_t toolMinor) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_WIDTH_MINOR, 0, toolMinor, 0);
}
void MultiTouchInputMapperTest::processOrientation(
MultiTouchInputMapper* mapper, int32_t orientation) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_ORIENTATION, 0, orientation, 0);
}
void MultiTouchInputMapperTest::processPressure(
MultiTouchInputMapper* mapper, int32_t pressure) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_PRESSURE, 0, pressure, 0);
}
void MultiTouchInputMapperTest::processId(
MultiTouchInputMapper* mapper, int32_t id) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_TRACKING_ID, 0, id, 0);
}
void MultiTouchInputMapperTest::processMTSync(MultiTouchInputMapper* mapper) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_MT_REPORT, 0, 0, 0);
}
void MultiTouchInputMapperTest::processSync(MultiTouchInputMapper* mapper) {
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0);
}
TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithoutTrackingIds) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
prepareAxes(POSITION);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
FakeInputDispatcher::NotifyMotionArgs motionArgs;
// Two fingers down at once.
int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500;
processPosition(mapper, x1, y1);
processMTSync(mapper);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerIds[0]);
ASSERT_EQ(1, motionArgs.pointerIds[1]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Move.
x1 += 10; y1 += 15; x2 += 5; y2 -= 10;
processPosition(mapper, x1, y1);
processMTSync(mapper);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerIds[0]);
ASSERT_EQ(1, motionArgs.pointerIds[1]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// First finger up.
x2 += 15; y2 -= 20;
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerIds[0]);
ASSERT_EQ(1, motionArgs.pointerIds[1]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Move.
x2 += 20; y2 -= 25;
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// New finger down.
int32_t x3 = 700, y3 = 300;
processPosition(mapper, x2, y2);
processMTSync(mapper);
processPosition(mapper, x3, y3);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerIds[0]);
ASSERT_EQ(1, motionArgs.pointerIds[1]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Second finger up.
x3 += 30; y3 -= 20;
processPosition(mapper, x3, y3);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerIds[0]);
ASSERT_EQ(1, motionArgs.pointerIds[1]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Last finger up.
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(0, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled());
}
TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithTrackingIds) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
prepareAxes(POSITION | ID);
prepareVirtualKeys();
addMapperAndConfigure(mapper);
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
FakeInputDispatcher::NotifyMotionArgs motionArgs;
// Two fingers down at once.
int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500;
processPosition(mapper, x1, y1);
processId(mapper, 1);
processMTSync(mapper);
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerIds[0]);
ASSERT_EQ(2, motionArgs.pointerIds[1]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
// Move.
x1 += 10; y1 += 15; x2 += 5; y2 -= 10;
processPosition(mapper, x1, y1);
processId(mapper, 1);
processMTSync(mapper);
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerIds[0]);
ASSERT_EQ(2, motionArgs.pointerIds[1]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
// First finger up.
x2 += 15; y2 -= 20;
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(1, motionArgs.pointerIds[0]);
ASSERT_EQ(2, motionArgs.pointerIds[1]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(2, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
// Move.
x2 += 20; y2 -= 25;
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(2, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
// New finger down.
int32_t x3 = 700, y3 = 300;
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processPosition(mapper, x3, y3);
processId(mapper, 3);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(2, motionArgs.pointerIds[0]);
ASSERT_EQ(3, motionArgs.pointerIds[1]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0));
// Second finger up.
x3 += 30; y3 -= 20;
processPosition(mapper, x3, y3);
processId(mapper, 3);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
ASSERT_EQ(2, motionArgs.pointerIds[0]);
ASSERT_EQ(3, motionArgs.pointerIds[1]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(3, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0));
// Last finger up.
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
ASSERT_EQ(3, motionArgs.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0));
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled());
}
TEST_F(MultiTouchInputMapperTest, Process_AllAxes_WithDefaultCalibration) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
prepareAxes(POSITION | TOUCH | TOOL | PRESSURE | ORIENTATION | ID | MINOR);
addMapperAndConfigure(mapper);
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawTouchMajor = 7;
int32_t rawTouchMinor = 6;
int32_t rawToolMajor = 9;
int32_t rawToolMinor = 8;
int32_t rawPressure = 11;
int32_t rawOrientation = 3;
int32_t id = 5;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float pressure = float(rawPressure) / RAW_PRESSURE_MAX;
float size = avg(rawToolMajor, rawToolMinor) / RAW_TOOL_MAX;
float toolMajor = float(min(DISPLAY_WIDTH, DISPLAY_HEIGHT)) * rawToolMajor / RAW_TOOL_MAX;
float toolMinor = float(min(DISPLAY_WIDTH, DISPLAY_HEIGHT)) * rawToolMinor / RAW_TOOL_MAX;
float touchMajor = min(toolMajor * pressure, toolMajor);
float touchMinor = min(toolMinor * pressure, toolMinor);
float orientation = float(rawOrientation) / RAW_ORIENTATION_MAX * M_PI_2;
processPosition(mapper, rawX, rawY);
processTouchMajor(mapper, rawTouchMajor);
processTouchMinor(mapper, rawTouchMinor);
processToolMajor(mapper, rawToolMajor);
processToolMinor(mapper, rawToolMinor);
processPressure(mapper, rawPressure);
processOrientation(mapper, rawOrientation);
processId(mapper, id);
processMTSync(mapper);
processSync(mapper);
FakeInputDispatcher::NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(id, args.pointerIds[0]);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, pressure, size, touchMajor, touchMinor, toolMajor, toolMinor, orientation));
}
TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_GeometricCalibration) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
prepareAxes(POSITION | TOUCH | TOOL | MINOR);
addConfigurationProperty("touch.touchSize.calibration", "geometric");
addConfigurationProperty("touch.toolSize.calibration", "geometric");
addMapperAndConfigure(mapper);
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawTouchMajor = 140;
int32_t rawTouchMinor = 120;
int32_t rawToolMajor = 180;
int32_t rawToolMinor = 160;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float pressure = float(rawTouchMajor) / RAW_TOUCH_MAX;
float size = avg(rawToolMajor, rawToolMinor) / RAW_TOOL_MAX;
float scale = avg(float(DISPLAY_WIDTH) / (RAW_X_MAX - RAW_X_MIN),
float(DISPLAY_HEIGHT) / (RAW_Y_MAX - RAW_Y_MIN));
float toolMajor = float(rawToolMajor) * scale;
float toolMinor = float(rawToolMinor) * scale;
float touchMajor = min(float(rawTouchMajor) * scale, toolMajor);
float touchMinor = min(float(rawTouchMinor) * scale, toolMinor);
processPosition(mapper, rawX, rawY);
processTouchMajor(mapper, rawTouchMajor);
processTouchMinor(mapper, rawTouchMinor);
processToolMajor(mapper, rawToolMajor);
processToolMinor(mapper, rawToolMinor);
processMTSync(mapper);
processSync(mapper);
FakeInputDispatcher::NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, pressure, size, touchMajor, touchMinor, toolMajor, toolMinor, 0));
}
TEST_F(MultiTouchInputMapperTest, Process_TouchToolPressureSizeAxes_SummedLinearCalibration) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
prepareAxes(POSITION | TOUCH | TOOL);
addConfigurationProperty("touch.touchSize.calibration", "pressure");
addConfigurationProperty("touch.toolSize.calibration", "linear");
addConfigurationProperty("touch.toolSize.linearScale", "10");
addConfigurationProperty("touch.toolSize.linearBias", "160");
addConfigurationProperty("touch.toolSize.isSummed", "1");
addConfigurationProperty("touch.pressure.calibration", "amplitude");
addConfigurationProperty("touch.pressure.source", "touch");
addConfigurationProperty("touch.pressure.scale", "0.01");
addMapperAndConfigure(mapper);
// These calculations are based on the input device calibration documentation.
// Note: We only provide a single common touch/tool value because the device is assumed
// not to emit separate values for each pointer (isSummed = 1).
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawX2 = 150;
int32_t rawY2 = 250;
int32_t rawTouchMajor = 60;
int32_t rawToolMajor = 5;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float x2 = toDisplayX(rawX2);
float y2 = toDisplayY(rawY2);
float pressure = float(rawTouchMajor) * 0.01f;
float size = float(rawToolMajor) / RAW_TOOL_MAX;
float tool = (float(rawToolMajor) * 10.0f + 160.0f) / 2;
float touch = min(tool * pressure, tool);
processPosition(mapper, rawX, rawY);
processTouchMajor(mapper, rawTouchMajor);
processToolMajor(mapper, rawToolMajor);
processMTSync(mapper);
processPosition(mapper, rawX2, rawY2);
processTouchMajor(mapper, rawTouchMajor);
processToolMajor(mapper, rawToolMajor);
processMTSync(mapper);
processSync(mapper);
FakeInputDispatcher::NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
args.action);
ASSERT_EQ(size_t(2), args.pointerCount);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, pressure, size, touch, touch, tool, tool, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[1],
x2, y2, pressure, size, touch, touch, tool, tool, 0));
}
TEST_F(MultiTouchInputMapperTest, Process_TouchToolPressureSizeAxes_AreaCalibration) {
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice);
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
prepareAxes(POSITION | TOUCH | TOOL);
addConfigurationProperty("touch.touchSize.calibration", "pressure");
addConfigurationProperty("touch.toolSize.calibration", "area");
addConfigurationProperty("touch.toolSize.areaScale", "22");
addConfigurationProperty("touch.toolSize.areaBias", "1");
addConfigurationProperty("touch.toolSize.linearScale", "9.2");
addConfigurationProperty("touch.toolSize.linearBias", "3");
addConfigurationProperty("touch.pressure.calibration", "amplitude");
addConfigurationProperty("touch.pressure.source", "touch");
addConfigurationProperty("touch.pressure.scale", "0.01");
addMapperAndConfigure(mapper);
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawTouchMajor = 60;
int32_t rawToolMajor = 5;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float pressure = float(rawTouchMajor) * 0.01f;
float size = float(rawToolMajor) / RAW_TOOL_MAX;
float tool = sqrtf(float(rawToolMajor) * 22.0f + 1.0f) * 9.2f + 3.0f;
float touch = min(tool * pressure, tool);
processPosition(mapper, rawX, rawY);
processTouchMajor(mapper, rawTouchMajor);
processToolMajor(mapper, rawToolMajor);
processMTSync(mapper);
processSync(mapper);
FakeInputDispatcher::NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, pressure, size, touch, touch, tool, tool, 0));
}
} // namespace android