replicant-frameworks_native/services/inputflinger/InputDispatcher.cpp

4500 lines
174 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "InputDispatcher"
#define ATRACE_TAG ATRACE_TAG_INPUT
//#define LOG_NDEBUG 0
// Log detailed debug messages about each inbound event notification to the dispatcher.
#define DEBUG_INBOUND_EVENT_DETAILS 0
// Log detailed debug messages about each outbound event processed by the dispatcher.
#define DEBUG_OUTBOUND_EVENT_DETAILS 0
// Log debug messages about the dispatch cycle.
#define DEBUG_DISPATCH_CYCLE 0
// Log debug messages about registrations.
#define DEBUG_REGISTRATION 0
// Log debug messages about input event injection.
#define DEBUG_INJECTION 0
// Log debug messages about input focus tracking.
#define DEBUG_FOCUS 0
// Log debug messages about the app switch latency optimization.
#define DEBUG_APP_SWITCH 0
// Log debug messages about hover events.
#define DEBUG_HOVER 0
#include "InputDispatcher.h"
#include <utils/Trace.h>
#include <cutils/log.h>
#include <powermanager/PowerManager.h>
#include <ui/Region.h>
#include <stddef.h>
#include <unistd.h>
#include <errno.h>
#include <limits.h>
#include <time.h>
#define INDENT " "
#define INDENT2 " "
#define INDENT3 " "
#define INDENT4 " "
namespace android {
// Default input dispatching timeout if there is no focused application or paused window
// from which to determine an appropriate dispatching timeout.
const nsecs_t DEFAULT_INPUT_DISPATCHING_TIMEOUT = 5000 * 1000000LL; // 5 sec
// Amount of time to allow for all pending events to be processed when an app switch
// key is on the way. This is used to preempt input dispatch and drop input events
// when an application takes too long to respond and the user has pressed an app switch key.
const nsecs_t APP_SWITCH_TIMEOUT = 500 * 1000000LL; // 0.5sec
// Amount of time to allow for an event to be dispatched (measured since its eventTime)
// before considering it stale and dropping it.
const nsecs_t STALE_EVENT_TIMEOUT = 10000 * 1000000LL; // 10sec
// Amount of time to allow touch events to be streamed out to a connection before requiring
// that the first event be finished. This value extends the ANR timeout by the specified
// amount. For example, if streaming is allowed to get ahead by one second relative to the
// queue of waiting unfinished events, then ANRs will similarly be delayed by one second.
const nsecs_t STREAM_AHEAD_EVENT_TIMEOUT = 500 * 1000000LL; // 0.5sec
// Log a warning when an event takes longer than this to process, even if an ANR does not occur.
const nsecs_t SLOW_EVENT_PROCESSING_WARNING_TIMEOUT = 2000 * 1000000LL; // 2sec
// Number of recent events to keep for debugging purposes.
const size_t RECENT_QUEUE_MAX_SIZE = 10;
static inline nsecs_t now() {
return systemTime(SYSTEM_TIME_MONOTONIC);
}
static inline const char* toString(bool value) {
return value ? "true" : "false";
}
static inline int32_t getMotionEventActionPointerIndex(int32_t action) {
return (action & AMOTION_EVENT_ACTION_POINTER_INDEX_MASK)
>> AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
}
static bool isValidKeyAction(int32_t action) {
switch (action) {
case AKEY_EVENT_ACTION_DOWN:
case AKEY_EVENT_ACTION_UP:
return true;
default:
return false;
}
}
static bool validateKeyEvent(int32_t action) {
if (! isValidKeyAction(action)) {
ALOGE("Key event has invalid action code 0x%x", action);
return false;
}
return true;
}
static bool isValidMotionAction(int32_t action, size_t pointerCount) {
switch (action & AMOTION_EVENT_ACTION_MASK) {
case AMOTION_EVENT_ACTION_DOWN:
case AMOTION_EVENT_ACTION_UP:
case AMOTION_EVENT_ACTION_CANCEL:
case AMOTION_EVENT_ACTION_MOVE:
case AMOTION_EVENT_ACTION_OUTSIDE:
case AMOTION_EVENT_ACTION_HOVER_ENTER:
case AMOTION_EVENT_ACTION_HOVER_MOVE:
case AMOTION_EVENT_ACTION_HOVER_EXIT:
case AMOTION_EVENT_ACTION_SCROLL:
return true;
case AMOTION_EVENT_ACTION_POINTER_DOWN:
case AMOTION_EVENT_ACTION_POINTER_UP: {
int32_t index = getMotionEventActionPointerIndex(action);
return index >= 0 && size_t(index) < pointerCount;
}
default:
return false;
}
}
static bool validateMotionEvent(int32_t action, size_t pointerCount,
const PointerProperties* pointerProperties) {
if (! isValidMotionAction(action, pointerCount)) {
ALOGE("Motion event has invalid action code 0x%x", action);
return false;
}
if (pointerCount < 1 || pointerCount > MAX_POINTERS) {
ALOGE("Motion event has invalid pointer count %zu; value must be between 1 and %d.",
pointerCount, MAX_POINTERS);
return false;
}
BitSet32 pointerIdBits;
for (size_t i = 0; i < pointerCount; i++) {
int32_t id = pointerProperties[i].id;
if (id < 0 || id > MAX_POINTER_ID) {
ALOGE("Motion event has invalid pointer id %d; value must be between 0 and %d",
id, MAX_POINTER_ID);
return false;
}
if (pointerIdBits.hasBit(id)) {
ALOGE("Motion event has duplicate pointer id %d", id);
return false;
}
pointerIdBits.markBit(id);
}
return true;
}
static bool isMainDisplay(int32_t displayId) {
return displayId == ADISPLAY_ID_DEFAULT || displayId == ADISPLAY_ID_NONE;
}
static void dumpRegion(String8& dump, const Region& region) {
if (region.isEmpty()) {
dump.append("<empty>");
return;
}
bool first = true;
Region::const_iterator cur = region.begin();
Region::const_iterator const tail = region.end();
while (cur != tail) {
if (first) {
first = false;
} else {
dump.append("|");
}
dump.appendFormat("[%d,%d][%d,%d]", cur->left, cur->top, cur->right, cur->bottom);
cur++;
}
}
// --- InputDispatcher ---
InputDispatcher::InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy) :
mPolicy(policy),
mPendingEvent(NULL), mAppSwitchSawKeyDown(false), mAppSwitchDueTime(LONG_LONG_MAX),
mNextUnblockedEvent(NULL),
mDispatchEnabled(false), mDispatchFrozen(false), mInputFilterEnabled(false),
mInputTargetWaitCause(INPUT_TARGET_WAIT_CAUSE_NONE) {
mLooper = new Looper(false);
mKeyRepeatState.lastKeyEntry = NULL;
policy->getDispatcherConfiguration(&mConfig);
}
InputDispatcher::~InputDispatcher() {
{ // acquire lock
AutoMutex _l(mLock);
resetKeyRepeatLocked();
releasePendingEventLocked();
drainInboundQueueLocked();
}
while (mConnectionsByFd.size() != 0) {
unregisterInputChannel(mConnectionsByFd.valueAt(0)->inputChannel);
}
}
void InputDispatcher::dispatchOnce() {
nsecs_t nextWakeupTime = LONG_LONG_MAX;
{ // acquire lock
AutoMutex _l(mLock);
mDispatcherIsAliveCondition.broadcast();
// Run a dispatch loop if there are no pending commands.
// The dispatch loop might enqueue commands to run afterwards.
if (!haveCommandsLocked()) {
dispatchOnceInnerLocked(&nextWakeupTime);
}
// Run all pending commands if there are any.
// If any commands were run then force the next poll to wake up immediately.
if (runCommandsLockedInterruptible()) {
nextWakeupTime = LONG_LONG_MIN;
}
} // release lock
// Wait for callback or timeout or wake. (make sure we round up, not down)
nsecs_t currentTime = now();
int timeoutMillis = toMillisecondTimeoutDelay(currentTime, nextWakeupTime);
mLooper->pollOnce(timeoutMillis);
}
void InputDispatcher::dispatchOnceInnerLocked(nsecs_t* nextWakeupTime) {
nsecs_t currentTime = now();
// Reset the key repeat timer whenever normal dispatch is suspended while the
// device is in a non-interactive state. This is to ensure that we abort a key
// repeat if the device is just coming out of sleep.
if (!mDispatchEnabled) {
resetKeyRepeatLocked();
}
// If dispatching is frozen, do not process timeouts or try to deliver any new events.
if (mDispatchFrozen) {
#if DEBUG_FOCUS
ALOGD("Dispatch frozen. Waiting some more.");
#endif
return;
}
// Optimize latency of app switches.
// Essentially we start a short timeout when an app switch key (HOME / ENDCALL) has
// been pressed. When it expires, we preempt dispatch and drop all other pending events.
bool isAppSwitchDue = mAppSwitchDueTime <= currentTime;
if (mAppSwitchDueTime < *nextWakeupTime) {
*nextWakeupTime = mAppSwitchDueTime;
}
// Ready to start a new event.
// If we don't already have a pending event, go grab one.
if (! mPendingEvent) {
if (mInboundQueue.isEmpty()) {
if (isAppSwitchDue) {
// The inbound queue is empty so the app switch key we were waiting
// for will never arrive. Stop waiting for it.
resetPendingAppSwitchLocked(false);
isAppSwitchDue = false;
}
// Synthesize a key repeat if appropriate.
if (mKeyRepeatState.lastKeyEntry) {
if (currentTime >= mKeyRepeatState.nextRepeatTime) {
mPendingEvent = synthesizeKeyRepeatLocked(currentTime);
} else {
if (mKeyRepeatState.nextRepeatTime < *nextWakeupTime) {
*nextWakeupTime = mKeyRepeatState.nextRepeatTime;
}
}
}
// Nothing to do if there is no pending event.
if (!mPendingEvent) {
return;
}
} else {
// Inbound queue has at least one entry.
mPendingEvent = mInboundQueue.dequeueAtHead();
traceInboundQueueLengthLocked();
}
// Poke user activity for this event.
if (mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER) {
pokeUserActivityLocked(mPendingEvent);
}
// Get ready to dispatch the event.
resetANRTimeoutsLocked();
}
// Now we have an event to dispatch.
// All events are eventually dequeued and processed this way, even if we intend to drop them.
ALOG_ASSERT(mPendingEvent != NULL);
bool done = false;
DropReason dropReason = DROP_REASON_NOT_DROPPED;
if (!(mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER)) {
dropReason = DROP_REASON_POLICY;
} else if (!mDispatchEnabled) {
dropReason = DROP_REASON_DISABLED;
}
if (mNextUnblockedEvent == mPendingEvent) {
mNextUnblockedEvent = NULL;
}
switch (mPendingEvent->type) {
case EventEntry::TYPE_CONFIGURATION_CHANGED: {
ConfigurationChangedEntry* typedEntry =
static_cast<ConfigurationChangedEntry*>(mPendingEvent);
done = dispatchConfigurationChangedLocked(currentTime, typedEntry);
dropReason = DROP_REASON_NOT_DROPPED; // configuration changes are never dropped
break;
}
case EventEntry::TYPE_DEVICE_RESET: {
DeviceResetEntry* typedEntry =
static_cast<DeviceResetEntry*>(mPendingEvent);
done = dispatchDeviceResetLocked(currentTime, typedEntry);
dropReason = DROP_REASON_NOT_DROPPED; // device resets are never dropped
break;
}
case EventEntry::TYPE_KEY: {
KeyEntry* typedEntry = static_cast<KeyEntry*>(mPendingEvent);
if (isAppSwitchDue) {
if (isAppSwitchKeyEventLocked(typedEntry)) {
resetPendingAppSwitchLocked(true);
isAppSwitchDue = false;
} else if (dropReason == DROP_REASON_NOT_DROPPED) {
dropReason = DROP_REASON_APP_SWITCH;
}
}
if (dropReason == DROP_REASON_NOT_DROPPED
&& isStaleEventLocked(currentTime, typedEntry)) {
dropReason = DROP_REASON_STALE;
}
if (dropReason == DROP_REASON_NOT_DROPPED && mNextUnblockedEvent) {
dropReason = DROP_REASON_BLOCKED;
}
done = dispatchKeyLocked(currentTime, typedEntry, &dropReason, nextWakeupTime);
break;
}
case EventEntry::TYPE_MOTION: {
MotionEntry* typedEntry = static_cast<MotionEntry*>(mPendingEvent);
if (dropReason == DROP_REASON_NOT_DROPPED && isAppSwitchDue) {
dropReason = DROP_REASON_APP_SWITCH;
}
if (dropReason == DROP_REASON_NOT_DROPPED
&& isStaleEventLocked(currentTime, typedEntry)) {
dropReason = DROP_REASON_STALE;
}
if (dropReason == DROP_REASON_NOT_DROPPED && mNextUnblockedEvent) {
dropReason = DROP_REASON_BLOCKED;
}
done = dispatchMotionLocked(currentTime, typedEntry,
&dropReason, nextWakeupTime);
break;
}
default:
ALOG_ASSERT(false);
break;
}
if (done) {
if (dropReason != DROP_REASON_NOT_DROPPED) {
dropInboundEventLocked(mPendingEvent, dropReason);
}
releasePendingEventLocked();
*nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately
}
}
bool InputDispatcher::enqueueInboundEventLocked(EventEntry* entry) {
bool needWake = mInboundQueue.isEmpty();
mInboundQueue.enqueueAtTail(entry);
traceInboundQueueLengthLocked();
switch (entry->type) {
case EventEntry::TYPE_KEY: {
// Optimize app switch latency.
// If the application takes too long to catch up then we drop all events preceding
// the app switch key.
KeyEntry* keyEntry = static_cast<KeyEntry*>(entry);
if (isAppSwitchKeyEventLocked(keyEntry)) {
if (keyEntry->action == AKEY_EVENT_ACTION_DOWN) {
mAppSwitchSawKeyDown = true;
} else if (keyEntry->action == AKEY_EVENT_ACTION_UP) {
if (mAppSwitchSawKeyDown) {
#if DEBUG_APP_SWITCH
ALOGD("App switch is pending!");
#endif
mAppSwitchDueTime = keyEntry->eventTime + APP_SWITCH_TIMEOUT;
mAppSwitchSawKeyDown = false;
needWake = true;
}
}
}
break;
}
case EventEntry::TYPE_MOTION: {
// Optimize case where the current application is unresponsive and the user
// decides to touch a window in a different application.
// If the application takes too long to catch up then we drop all events preceding
// the touch into the other window.
MotionEntry* motionEntry = static_cast<MotionEntry*>(entry);
if (motionEntry->action == AMOTION_EVENT_ACTION_DOWN
&& (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER)
&& mInputTargetWaitCause == INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY
&& mInputTargetWaitApplicationHandle != NULL) {
int32_t displayId = motionEntry->displayId;
int32_t x = int32_t(motionEntry->pointerCoords[0].
getAxisValue(AMOTION_EVENT_AXIS_X));
int32_t y = int32_t(motionEntry->pointerCoords[0].
getAxisValue(AMOTION_EVENT_AXIS_Y));
sp<InputWindowHandle> touchedWindowHandle = findTouchedWindowAtLocked(displayId, x, y);
if (touchedWindowHandle != NULL
&& touchedWindowHandle->inputApplicationHandle
!= mInputTargetWaitApplicationHandle) {
// User touched a different application than the one we are waiting on.
// Flag the event, and start pruning the input queue.
mNextUnblockedEvent = motionEntry;
needWake = true;
}
}
break;
}
}
return needWake;
}
void InputDispatcher::addRecentEventLocked(EventEntry* entry) {
entry->refCount += 1;
mRecentQueue.enqueueAtTail(entry);
if (mRecentQueue.count() > RECENT_QUEUE_MAX_SIZE) {
mRecentQueue.dequeueAtHead()->release();
}
}
sp<InputWindowHandle> InputDispatcher::findTouchedWindowAtLocked(int32_t displayId,
int32_t x, int32_t y) {
// Traverse windows from front to back to find touched window.
size_t numWindows = mWindowHandles.size();
for (size_t i = 0; i < numWindows; i++) {
sp<InputWindowHandle> windowHandle = mWindowHandles.itemAt(i);
const InputWindowInfo* windowInfo = windowHandle->getInfo();
if (windowInfo->displayId == displayId) {
int32_t flags = windowInfo->layoutParamsFlags;
int32_t privateFlags = windowInfo->layoutParamsPrivateFlags;
if (windowInfo->visible) {
if (!(flags & InputWindowInfo::FLAG_NOT_TOUCHABLE)) {
bool isTouchModal = (flags & (InputWindowInfo::FLAG_NOT_FOCUSABLE
| InputWindowInfo::FLAG_NOT_TOUCH_MODAL)) == 0;
if (isTouchModal || windowInfo->touchableRegionContainsPoint(x, y)) {
// Found window.
return windowHandle;
}
}
}
if (privateFlags & InputWindowInfo::PRIVATE_FLAG_SYSTEM_ERROR) {
// Error window is on top but not visible, so touch is dropped.
return NULL;
}
}
}
return NULL;
}
void InputDispatcher::dropInboundEventLocked(EventEntry* entry, DropReason dropReason) {
const char* reason;
switch (dropReason) {
case DROP_REASON_POLICY:
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("Dropped event because policy consumed it.");
#endif
reason = "inbound event was dropped because the policy consumed it";
break;
case DROP_REASON_DISABLED:
ALOGI("Dropped event because input dispatch is disabled.");
reason = "inbound event was dropped because input dispatch is disabled";
break;
case DROP_REASON_APP_SWITCH:
ALOGI("Dropped event because of pending overdue app switch.");
reason = "inbound event was dropped because of pending overdue app switch";
break;
case DROP_REASON_BLOCKED:
ALOGI("Dropped event because the current application is not responding and the user "
"has started interacting with a different application.");
reason = "inbound event was dropped because the current application is not responding "
"and the user has started interacting with a different application";
break;
case DROP_REASON_STALE:
ALOGI("Dropped event because it is stale.");
reason = "inbound event was dropped because it is stale";
break;
default:
ALOG_ASSERT(false);
return;
}
switch (entry->type) {
case EventEntry::TYPE_KEY: {
CancelationOptions options(CancelationOptions::CANCEL_NON_POINTER_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
break;
}
case EventEntry::TYPE_MOTION: {
MotionEntry* motionEntry = static_cast<MotionEntry*>(entry);
if (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) {
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
} else {
CancelationOptions options(CancelationOptions::CANCEL_NON_POINTER_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
}
break;
}
}
}
bool InputDispatcher::isAppSwitchKeyCode(int32_t keyCode) {
return keyCode == AKEYCODE_HOME
|| keyCode == AKEYCODE_ENDCALL
|| keyCode == AKEYCODE_APP_SWITCH;
}
bool InputDispatcher::isAppSwitchKeyEventLocked(KeyEntry* keyEntry) {
return ! (keyEntry->flags & AKEY_EVENT_FLAG_CANCELED)
&& isAppSwitchKeyCode(keyEntry->keyCode)
&& (keyEntry->policyFlags & POLICY_FLAG_TRUSTED)
&& (keyEntry->policyFlags & POLICY_FLAG_PASS_TO_USER);
}
bool InputDispatcher::isAppSwitchPendingLocked() {
return mAppSwitchDueTime != LONG_LONG_MAX;
}
void InputDispatcher::resetPendingAppSwitchLocked(bool handled) {
mAppSwitchDueTime = LONG_LONG_MAX;
#if DEBUG_APP_SWITCH
if (handled) {
ALOGD("App switch has arrived.");
} else {
ALOGD("App switch was abandoned.");
}
#endif
}
bool InputDispatcher::isStaleEventLocked(nsecs_t currentTime, EventEntry* entry) {
return currentTime - entry->eventTime >= STALE_EVENT_TIMEOUT;
}
bool InputDispatcher::haveCommandsLocked() const {
return !mCommandQueue.isEmpty();
}
bool InputDispatcher::runCommandsLockedInterruptible() {
if (mCommandQueue.isEmpty()) {
return false;
}
do {
CommandEntry* commandEntry = mCommandQueue.dequeueAtHead();
Command command = commandEntry->command;
(this->*command)(commandEntry); // commands are implicitly 'LockedInterruptible'
commandEntry->connection.clear();
delete commandEntry;
} while (! mCommandQueue.isEmpty());
return true;
}
InputDispatcher::CommandEntry* InputDispatcher::postCommandLocked(Command command) {
CommandEntry* commandEntry = new CommandEntry(command);
mCommandQueue.enqueueAtTail(commandEntry);
return commandEntry;
}
void InputDispatcher::drainInboundQueueLocked() {
while (! mInboundQueue.isEmpty()) {
EventEntry* entry = mInboundQueue.dequeueAtHead();
releaseInboundEventLocked(entry);
}
traceInboundQueueLengthLocked();
}
void InputDispatcher::releasePendingEventLocked() {
if (mPendingEvent) {
resetANRTimeoutsLocked();
releaseInboundEventLocked(mPendingEvent);
mPendingEvent = NULL;
}
}
void InputDispatcher::releaseInboundEventLocked(EventEntry* entry) {
InjectionState* injectionState = entry->injectionState;
if (injectionState && injectionState->injectionResult == INPUT_EVENT_INJECTION_PENDING) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("Injected inbound event was dropped.");
#endif
setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_FAILED);
}
if (entry == mNextUnblockedEvent) {
mNextUnblockedEvent = NULL;
}
addRecentEventLocked(entry);
entry->release();
}
void InputDispatcher::resetKeyRepeatLocked() {
if (mKeyRepeatState.lastKeyEntry) {
mKeyRepeatState.lastKeyEntry->release();
mKeyRepeatState.lastKeyEntry = NULL;
}
}
InputDispatcher::KeyEntry* InputDispatcher::synthesizeKeyRepeatLocked(nsecs_t currentTime) {
KeyEntry* entry = mKeyRepeatState.lastKeyEntry;
// Reuse the repeated key entry if it is otherwise unreferenced.
uint32_t policyFlags = (entry->policyFlags & POLICY_FLAG_RAW_MASK)
| POLICY_FLAG_PASS_TO_USER | POLICY_FLAG_TRUSTED;
if (entry->refCount == 1) {
entry->recycle();
entry->eventTime = currentTime;
entry->policyFlags = policyFlags;
entry->repeatCount += 1;
} else {
KeyEntry* newEntry = new KeyEntry(currentTime,
entry->deviceId, entry->source, policyFlags,
entry->action, entry->flags, entry->keyCode, entry->scanCode,
entry->metaState, entry->repeatCount + 1, entry->downTime);
mKeyRepeatState.lastKeyEntry = newEntry;
entry->release();
entry = newEntry;
}
entry->syntheticRepeat = true;
// Increment reference count since we keep a reference to the event in
// mKeyRepeatState.lastKeyEntry in addition to the one we return.
entry->refCount += 1;
mKeyRepeatState.nextRepeatTime = currentTime + mConfig.keyRepeatDelay;
return entry;
}
bool InputDispatcher::dispatchConfigurationChangedLocked(
nsecs_t currentTime, ConfigurationChangedEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("dispatchConfigurationChanged - eventTime=%lld", entry->eventTime);
#endif
// Reset key repeating in case a keyboard device was added or removed or something.
resetKeyRepeatLocked();
// Enqueue a command to run outside the lock to tell the policy that the configuration changed.
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doNotifyConfigurationChangedInterruptible);
commandEntry->eventTime = entry->eventTime;
return true;
}
bool InputDispatcher::dispatchDeviceResetLocked(
nsecs_t currentTime, DeviceResetEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("dispatchDeviceReset - eventTime=%lld, deviceId=%d", entry->eventTime, entry->deviceId);
#endif
CancelationOptions options(CancelationOptions::CANCEL_ALL_EVENTS,
"device was reset");
options.deviceId = entry->deviceId;
synthesizeCancelationEventsForAllConnectionsLocked(options);
return true;
}
bool InputDispatcher::dispatchKeyLocked(nsecs_t currentTime, KeyEntry* entry,
DropReason* dropReason, nsecs_t* nextWakeupTime) {
// Preprocessing.
if (! entry->dispatchInProgress) {
if (entry->repeatCount == 0
&& entry->action == AKEY_EVENT_ACTION_DOWN
&& (entry->policyFlags & POLICY_FLAG_TRUSTED)
&& (!(entry->policyFlags & POLICY_FLAG_DISABLE_KEY_REPEAT))) {
if (mKeyRepeatState.lastKeyEntry
&& mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode) {
// We have seen two identical key downs in a row which indicates that the device
// driver is automatically generating key repeats itself. We take note of the
// repeat here, but we disable our own next key repeat timer since it is clear that
// we will not need to synthesize key repeats ourselves.
entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1;
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = LONG_LONG_MAX; // don't generate repeats ourselves
} else {
// Not a repeat. Save key down state in case we do see a repeat later.
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = entry->eventTime + mConfig.keyRepeatTimeout;
}
mKeyRepeatState.lastKeyEntry = entry;
entry->refCount += 1;
} else if (! entry->syntheticRepeat) {
resetKeyRepeatLocked();
}
if (entry->repeatCount == 1) {
entry->flags |= AKEY_EVENT_FLAG_LONG_PRESS;
} else {
entry->flags &= ~AKEY_EVENT_FLAG_LONG_PRESS;
}
entry->dispatchInProgress = true;
logOutboundKeyDetailsLocked("dispatchKey - ", entry);
}
// Handle case where the policy asked us to try again later last time.
if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_TRY_AGAIN_LATER) {
if (currentTime < entry->interceptKeyWakeupTime) {
if (entry->interceptKeyWakeupTime < *nextWakeupTime) {
*nextWakeupTime = entry->interceptKeyWakeupTime;
}
return false; // wait until next wakeup
}
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN;
entry->interceptKeyWakeupTime = 0;
}
// Give the policy a chance to intercept the key.
if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN) {
if (entry->policyFlags & POLICY_FLAG_PASS_TO_USER) {
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible);
if (mFocusedWindowHandle != NULL) {
commandEntry->inputWindowHandle = mFocusedWindowHandle;
}
commandEntry->keyEntry = entry;
entry->refCount += 1;
return false; // wait for the command to run
} else {
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE;
}
} else if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_SKIP) {
if (*dropReason == DROP_REASON_NOT_DROPPED) {
*dropReason = DROP_REASON_POLICY;
}
}
// Clean up if dropping the event.
if (*dropReason != DROP_REASON_NOT_DROPPED) {
setInjectionResultLocked(entry, *dropReason == DROP_REASON_POLICY
? INPUT_EVENT_INJECTION_SUCCEEDED : INPUT_EVENT_INJECTION_FAILED);
return true;
}
// Identify targets.
Vector<InputTarget> inputTargets;
int32_t injectionResult = findFocusedWindowTargetsLocked(currentTime,
entry, inputTargets, nextWakeupTime);
if (injectionResult == INPUT_EVENT_INJECTION_PENDING) {
return false;
}
setInjectionResultLocked(entry, injectionResult);
if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
return true;
}
addMonitoringTargetsLocked(inputTargets);
// Dispatch the key.
dispatchEventLocked(currentTime, entry, inputTargets);
return true;
}
void InputDispatcher::logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("%seventTime=%lld, deviceId=%d, source=0x%x, policyFlags=0x%x, "
"action=0x%x, flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, "
"repeatCount=%d, downTime=%lld",
prefix,
entry->eventTime, entry->deviceId, entry->source, entry->policyFlags,
entry->action, entry->flags, entry->keyCode, entry->scanCode, entry->metaState,
entry->repeatCount, entry->downTime);
#endif
}
bool InputDispatcher::dispatchMotionLocked(
nsecs_t currentTime, MotionEntry* entry, DropReason* dropReason, nsecs_t* nextWakeupTime) {
// Preprocessing.
if (! entry->dispatchInProgress) {
entry->dispatchInProgress = true;
logOutboundMotionDetailsLocked("dispatchMotion - ", entry);
}
// Clean up if dropping the event.
if (*dropReason != DROP_REASON_NOT_DROPPED) {
setInjectionResultLocked(entry, *dropReason == DROP_REASON_POLICY
? INPUT_EVENT_INJECTION_SUCCEEDED : INPUT_EVENT_INJECTION_FAILED);
return true;
}
bool isPointerEvent = entry->source & AINPUT_SOURCE_CLASS_POINTER;
// Identify targets.
Vector<InputTarget> inputTargets;
bool conflictingPointerActions = false;
int32_t injectionResult;
if (isPointerEvent) {
// Pointer event. (eg. touchscreen)
injectionResult = findTouchedWindowTargetsLocked(currentTime,
entry, inputTargets, nextWakeupTime, &conflictingPointerActions);
} else {
// Non touch event. (eg. trackball)
injectionResult = findFocusedWindowTargetsLocked(currentTime,
entry, inputTargets, nextWakeupTime);
}
if (injectionResult == INPUT_EVENT_INJECTION_PENDING) {
return false;
}
setInjectionResultLocked(entry, injectionResult);
if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
return true;
}
// TODO: support sending secondary display events to input monitors
if (isMainDisplay(entry->displayId)) {
addMonitoringTargetsLocked(inputTargets);
}
// Dispatch the motion.
if (conflictingPointerActions) {
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS,
"conflicting pointer actions");
synthesizeCancelationEventsForAllConnectionsLocked(options);
}
dispatchEventLocked(currentTime, entry, inputTargets);
return true;
}
void InputDispatcher::logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("%seventTime=%lld, deviceId=%d, source=0x%x, policyFlags=0x%x, "
"action=0x%x, flags=0x%x, "
"metaState=0x%x, buttonState=0x%x, "
"edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%lld",
prefix,
entry->eventTime, entry->deviceId, entry->source, entry->policyFlags,
entry->action, entry->flags,
entry->metaState, entry->buttonState,
entry->edgeFlags, entry->xPrecision, entry->yPrecision,
entry->downTime);
for (uint32_t i = 0; i < entry->pointerCount; i++) {
ALOGD(" Pointer %d: id=%d, toolType=%d, "
"x=%f, y=%f, pressure=%f, size=%f, "
"touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
"orientation=%f",
i, entry->pointerProperties[i].id,
entry->pointerProperties[i].toolType,
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_X),
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_Y),
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_PRESSURE),
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_SIZE),
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR),
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR),
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR),
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR),
entry->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION));
}
#endif
}
void InputDispatcher::dispatchEventLocked(nsecs_t currentTime,
EventEntry* eventEntry, const Vector<InputTarget>& inputTargets) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("dispatchEventToCurrentInputTargets");
#endif
ALOG_ASSERT(eventEntry->dispatchInProgress); // should already have been set to true
pokeUserActivityLocked(eventEntry);
for (size_t i = 0; i < inputTargets.size(); i++) {
const InputTarget& inputTarget = inputTargets.itemAt(i);
ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel);
if (connectionIndex >= 0) {
sp<Connection> connection = mConnectionsByFd.valueAt(connectionIndex);
prepareDispatchCycleLocked(currentTime, connection, eventEntry, &inputTarget);
} else {
#if DEBUG_FOCUS
ALOGD("Dropping event delivery to target with channel '%s' because it "
"is no longer registered with the input dispatcher.",
inputTarget.inputChannel->getName().string());
#endif
}
}
}
int32_t InputDispatcher::handleTargetsNotReadyLocked(nsecs_t currentTime,
const EventEntry* entry,
const sp<InputApplicationHandle>& applicationHandle,
const sp<InputWindowHandle>& windowHandle,
nsecs_t* nextWakeupTime, const char* reason) {
if (applicationHandle == NULL && windowHandle == NULL) {
if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY) {
#if DEBUG_FOCUS
ALOGD("Waiting for system to become ready for input. Reason: %s", reason);
#endif
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY;
mInputTargetWaitStartTime = currentTime;
mInputTargetWaitTimeoutTime = LONG_LONG_MAX;
mInputTargetWaitTimeoutExpired = false;
mInputTargetWaitApplicationHandle.clear();
}
} else {
if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) {
#if DEBUG_FOCUS
ALOGD("Waiting for application to become ready for input: %s. Reason: %s",
getApplicationWindowLabelLocked(applicationHandle, windowHandle).string(),
reason);
#endif
nsecs_t timeout;
if (windowHandle != NULL) {
timeout = windowHandle->getDispatchingTimeout(DEFAULT_INPUT_DISPATCHING_TIMEOUT);
} else if (applicationHandle != NULL) {
timeout = applicationHandle->getDispatchingTimeout(
DEFAULT_INPUT_DISPATCHING_TIMEOUT);
} else {
timeout = DEFAULT_INPUT_DISPATCHING_TIMEOUT;
}
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY;
mInputTargetWaitStartTime = currentTime;
mInputTargetWaitTimeoutTime = currentTime + timeout;
mInputTargetWaitTimeoutExpired = false;
mInputTargetWaitApplicationHandle.clear();
if (windowHandle != NULL) {
mInputTargetWaitApplicationHandle = windowHandle->inputApplicationHandle;
}
if (mInputTargetWaitApplicationHandle == NULL && applicationHandle != NULL) {
mInputTargetWaitApplicationHandle = applicationHandle;
}
}
}
if (mInputTargetWaitTimeoutExpired) {
return INPUT_EVENT_INJECTION_TIMED_OUT;
}
if (currentTime >= mInputTargetWaitTimeoutTime) {
onANRLocked(currentTime, applicationHandle, windowHandle,
entry->eventTime, mInputTargetWaitStartTime, reason);
// Force poll loop to wake up immediately on next iteration once we get the
// ANR response back from the policy.
*nextWakeupTime = LONG_LONG_MIN;
return INPUT_EVENT_INJECTION_PENDING;
} else {
// Force poll loop to wake up when timeout is due.
if (mInputTargetWaitTimeoutTime < *nextWakeupTime) {
*nextWakeupTime = mInputTargetWaitTimeoutTime;
}
return INPUT_EVENT_INJECTION_PENDING;
}
}
void InputDispatcher::resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout,
const sp<InputChannel>& inputChannel) {
if (newTimeout > 0) {
// Extend the timeout.
mInputTargetWaitTimeoutTime = now() + newTimeout;
} else {
// Give up.
mInputTargetWaitTimeoutExpired = true;
// Input state will not be realistic. Mark it out of sync.
if (inputChannel.get()) {
ssize_t connectionIndex = getConnectionIndexLocked(inputChannel);
if (connectionIndex >= 0) {
sp<Connection> connection = mConnectionsByFd.valueAt(connectionIndex);
sp<InputWindowHandle> windowHandle = connection->inputWindowHandle;
if (windowHandle != NULL) {
const InputWindowInfo* info = windowHandle->getInfo();
if (info) {
ssize_t stateIndex = mTouchStatesByDisplay.indexOfKey(info->displayId);
if (stateIndex >= 0) {
mTouchStatesByDisplay.editValueAt(stateIndex).removeWindow(
windowHandle);
}
}
}
if (connection->status == Connection::STATUS_NORMAL) {
CancelationOptions options(CancelationOptions::CANCEL_ALL_EVENTS,
"application not responding");
synthesizeCancelationEventsForConnectionLocked(connection, options);
}
}
}
}
}
nsecs_t InputDispatcher::getTimeSpentWaitingForApplicationLocked(
nsecs_t currentTime) {
if (mInputTargetWaitCause == INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) {
return currentTime - mInputTargetWaitStartTime;
}
return 0;
}
void InputDispatcher::resetANRTimeoutsLocked() {
#if DEBUG_FOCUS
ALOGD("Resetting ANR timeouts.");
#endif
// Reset input target wait timeout.
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE;
mInputTargetWaitApplicationHandle.clear();
}
int32_t InputDispatcher::findFocusedWindowTargetsLocked(nsecs_t currentTime,
const EventEntry* entry, Vector<InputTarget>& inputTargets, nsecs_t* nextWakeupTime) {
int32_t injectionResult;
// If there is no currently focused window and no focused application
// then drop the event.
if (mFocusedWindowHandle == NULL) {
if (mFocusedApplicationHandle != NULL) {
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
mFocusedApplicationHandle, NULL, nextWakeupTime,
"Waiting because no window has focus but there is a "
"focused application that may eventually add a window "
"when it finishes starting up.");
goto Unresponsive;
}
ALOGI("Dropping event because there is no focused window or focused application.");
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
// Check permissions.
if (! checkInjectionPermission(mFocusedWindowHandle, entry->injectionState)) {
injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
goto Failed;
}
// If the currently focused window is paused then keep waiting.
if (mFocusedWindowHandle->getInfo()->paused) {
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
mFocusedApplicationHandle, mFocusedWindowHandle, nextWakeupTime,
"Waiting because the focused window is paused.");
goto Unresponsive;
}
// If the currently focused window is still working on previous events then keep waiting.
if (!isWindowReadyForMoreInputLocked(currentTime, mFocusedWindowHandle, entry)) {
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
mFocusedApplicationHandle, mFocusedWindowHandle, nextWakeupTime,
"Waiting because the focused window has not finished "
"processing the input events that were previously delivered to it.");
goto Unresponsive;
}
// Success! Output targets.
injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
addWindowTargetLocked(mFocusedWindowHandle,
InputTarget::FLAG_FOREGROUND | InputTarget::FLAG_DISPATCH_AS_IS, BitSet32(0),
inputTargets);
// Done.
Failed:
Unresponsive:
nsecs_t timeSpentWaitingForApplication = getTimeSpentWaitingForApplicationLocked(currentTime);
updateDispatchStatisticsLocked(currentTime, entry,
injectionResult, timeSpentWaitingForApplication);
#if DEBUG_FOCUS
ALOGD("findFocusedWindow finished: injectionResult=%d, "
"timeSpentWaitingForApplication=%0.1fms",
injectionResult, timeSpentWaitingForApplication / 1000000.0);
#endif
return injectionResult;
}
int32_t InputDispatcher::findTouchedWindowTargetsLocked(nsecs_t currentTime,
const MotionEntry* entry, Vector<InputTarget>& inputTargets, nsecs_t* nextWakeupTime,
bool* outConflictingPointerActions) {
enum InjectionPermission {
INJECTION_PERMISSION_UNKNOWN,
INJECTION_PERMISSION_GRANTED,
INJECTION_PERMISSION_DENIED
};
nsecs_t startTime = now();
// For security reasons, we defer updating the touch state until we are sure that
// event injection will be allowed.
int32_t displayId = entry->displayId;
int32_t action = entry->action;
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
// Update the touch state as needed based on the properties of the touch event.
int32_t injectionResult = INPUT_EVENT_INJECTION_PENDING;
InjectionPermission injectionPermission = INJECTION_PERMISSION_UNKNOWN;
sp<InputWindowHandle> newHoverWindowHandle;
// Copy current touch state into mTempTouchState.
// This state is always reset at the end of this function, so if we don't find state
// for the specified display then our initial state will be empty.
const TouchState* oldState = NULL;
ssize_t oldStateIndex = mTouchStatesByDisplay.indexOfKey(displayId);
if (oldStateIndex >= 0) {
oldState = &mTouchStatesByDisplay.valueAt(oldStateIndex);
mTempTouchState.copyFrom(*oldState);
}
bool isSplit = mTempTouchState.split;
bool switchedDevice = mTempTouchState.deviceId >= 0 && mTempTouchState.displayId >= 0
&& (mTempTouchState.deviceId != entry->deviceId
|| mTempTouchState.source != entry->source
|| mTempTouchState.displayId != displayId);
bool isHoverAction = (maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE
|| maskedAction == AMOTION_EVENT_ACTION_HOVER_ENTER
|| maskedAction == AMOTION_EVENT_ACTION_HOVER_EXIT);
bool newGesture = (maskedAction == AMOTION_EVENT_ACTION_DOWN
|| maskedAction == AMOTION_EVENT_ACTION_SCROLL
|| isHoverAction);
bool wrongDevice = false;
if (newGesture) {
bool down = maskedAction == AMOTION_EVENT_ACTION_DOWN;
if (switchedDevice && mTempTouchState.down && !down) {
#if DEBUG_FOCUS
ALOGD("Dropping event because a pointer for a different device is already down.");
#endif
injectionResult = INPUT_EVENT_INJECTION_FAILED;
switchedDevice = false;
wrongDevice = true;
goto Failed;
}
mTempTouchState.reset();
mTempTouchState.down = down;
mTempTouchState.deviceId = entry->deviceId;
mTempTouchState.source = entry->source;
mTempTouchState.displayId = displayId;
isSplit = false;
}
if (newGesture || (isSplit && maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN)) {
/* Case 1: New splittable pointer going down, or need target for hover or scroll. */
int32_t pointerIndex = getMotionEventActionPointerIndex(action);
int32_t x = int32_t(entry->pointerCoords[pointerIndex].
getAxisValue(AMOTION_EVENT_AXIS_X));
int32_t y = int32_t(entry->pointerCoords[pointerIndex].
getAxisValue(AMOTION_EVENT_AXIS_Y));
sp<InputWindowHandle> newTouchedWindowHandle;
sp<InputWindowHandle> topErrorWindowHandle;
bool isTouchModal = false;
// Traverse windows from front to back to find touched window and outside targets.
size_t numWindows = mWindowHandles.size();
for (size_t i = 0; i < numWindows; i++) {
sp<InputWindowHandle> windowHandle = mWindowHandles.itemAt(i);
const InputWindowInfo* windowInfo = windowHandle->getInfo();
if (windowInfo->displayId != displayId) {
continue; // wrong display
}
int32_t privateFlags = windowInfo->layoutParamsPrivateFlags;
if (privateFlags & InputWindowInfo::PRIVATE_FLAG_SYSTEM_ERROR) {
if (topErrorWindowHandle == NULL) {
topErrorWindowHandle = windowHandle;
}
}
int32_t flags = windowInfo->layoutParamsFlags;
if (windowInfo->visible) {
if (! (flags & InputWindowInfo::FLAG_NOT_TOUCHABLE)) {
isTouchModal = (flags & (InputWindowInfo::FLAG_NOT_FOCUSABLE
| InputWindowInfo::FLAG_NOT_TOUCH_MODAL)) == 0;
if (isTouchModal || windowInfo->touchableRegionContainsPoint(x, y)) {
newTouchedWindowHandle = windowHandle;
break; // found touched window, exit window loop
}
}
if (maskedAction == AMOTION_EVENT_ACTION_DOWN
&& (flags & InputWindowInfo::FLAG_WATCH_OUTSIDE_TOUCH)) {
int32_t outsideTargetFlags = InputTarget::FLAG_DISPATCH_AS_OUTSIDE;
if (isWindowObscuredAtPointLocked(windowHandle, x, y)) {
outsideTargetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
}
mTempTouchState.addOrUpdateWindow(
windowHandle, outsideTargetFlags, BitSet32(0));
}
}
}
// If there is an error window but it is not taking focus (typically because
// it is invisible) then wait for it. Any other focused window may in
// fact be in ANR state.
if (topErrorWindowHandle != NULL && newTouchedWindowHandle != topErrorWindowHandle) {
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
NULL, NULL, nextWakeupTime,
"Waiting because a system error window is about to be displayed.");
injectionPermission = INJECTION_PERMISSION_UNKNOWN;
goto Unresponsive;
}
// Figure out whether splitting will be allowed for this window.
if (newTouchedWindowHandle != NULL
&& newTouchedWindowHandle->getInfo()->supportsSplitTouch()) {
// New window supports splitting.
isSplit = true;
} else if (isSplit) {
// New window does not support splitting but we have already split events.
// Ignore the new window.
newTouchedWindowHandle = NULL;
}
// Handle the case where we did not find a window.
if (newTouchedWindowHandle == NULL) {
// Try to assign the pointer to the first foreground window we find, if there is one.
newTouchedWindowHandle = mTempTouchState.getFirstForegroundWindowHandle();
if (newTouchedWindowHandle == NULL) {
ALOGI("Dropping event because there is no touchable window at (%d, %d).", x, y);
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
}
// Set target flags.
int32_t targetFlags = InputTarget::FLAG_FOREGROUND | InputTarget::FLAG_DISPATCH_AS_IS;
if (isSplit) {
targetFlags |= InputTarget::FLAG_SPLIT;
}
if (isWindowObscuredAtPointLocked(newTouchedWindowHandle, x, y)) {
targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
}
// Update hover state.
if (isHoverAction) {
newHoverWindowHandle = newTouchedWindowHandle;
} else if (maskedAction == AMOTION_EVENT_ACTION_SCROLL) {
newHoverWindowHandle = mLastHoverWindowHandle;
}
// Update the temporary touch state.
BitSet32 pointerIds;
if (isSplit) {
uint32_t pointerId = entry->pointerProperties[pointerIndex].id;
pointerIds.markBit(pointerId);
}
mTempTouchState.addOrUpdateWindow(newTouchedWindowHandle, targetFlags, pointerIds);
} else {
/* Case 2: Pointer move, up, cancel or non-splittable pointer down. */
// If the pointer is not currently down, then ignore the event.
if (! mTempTouchState.down) {
#if DEBUG_FOCUS
ALOGD("Dropping event because the pointer is not down or we previously "
"dropped the pointer down event.");
#endif
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
// Check whether touches should slip outside of the current foreground window.
if (maskedAction == AMOTION_EVENT_ACTION_MOVE
&& entry->pointerCount == 1
&& mTempTouchState.isSlippery()) {
int32_t x = int32_t(entry->pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X));
int32_t y = int32_t(entry->pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y));
sp<InputWindowHandle> oldTouchedWindowHandle =
mTempTouchState.getFirstForegroundWindowHandle();
sp<InputWindowHandle> newTouchedWindowHandle =
findTouchedWindowAtLocked(displayId, x, y);
if (oldTouchedWindowHandle != newTouchedWindowHandle
&& newTouchedWindowHandle != NULL) {
#if DEBUG_FOCUS
ALOGD("Touch is slipping out of window %s into window %s.",
oldTouchedWindowHandle->getName().string(),
newTouchedWindowHandle->getName().string());
#endif
// Make a slippery exit from the old window.
mTempTouchState.addOrUpdateWindow(oldTouchedWindowHandle,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT, BitSet32(0));
// Make a slippery entrance into the new window.
if (newTouchedWindowHandle->getInfo()->supportsSplitTouch()) {
isSplit = true;
}
int32_t targetFlags = InputTarget::FLAG_FOREGROUND
| InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER;
if (isSplit) {
targetFlags |= InputTarget::FLAG_SPLIT;
}
if (isWindowObscuredAtPointLocked(newTouchedWindowHandle, x, y)) {
targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
}
BitSet32 pointerIds;
if (isSplit) {
pointerIds.markBit(entry->pointerProperties[0].id);
}
mTempTouchState.addOrUpdateWindow(newTouchedWindowHandle, targetFlags, pointerIds);
}
}
}
if (newHoverWindowHandle != mLastHoverWindowHandle) {
// Let the previous window know that the hover sequence is over.
if (mLastHoverWindowHandle != NULL) {
#if DEBUG_HOVER
ALOGD("Sending hover exit event to window %s.",
mLastHoverWindowHandle->getName().string());
#endif
mTempTouchState.addOrUpdateWindow(mLastHoverWindowHandle,
InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT, BitSet32(0));
}
// Let the new window know that the hover sequence is starting.
if (newHoverWindowHandle != NULL) {
#if DEBUG_HOVER
ALOGD("Sending hover enter event to window %s.",
newHoverWindowHandle->getName().string());
#endif
mTempTouchState.addOrUpdateWindow(newHoverWindowHandle,
InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER, BitSet32(0));
}
}
// Check permission to inject into all touched foreground windows and ensure there
// is at least one touched foreground window.
{
bool haveForegroundWindow = false;
for (size_t i = 0; i < mTempTouchState.windows.size(); i++) {
const TouchedWindow& touchedWindow = mTempTouchState.windows[i];
if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) {
haveForegroundWindow = true;
if (! checkInjectionPermission(touchedWindow.windowHandle,
entry->injectionState)) {
injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
injectionPermission = INJECTION_PERMISSION_DENIED;
goto Failed;
}
}
}
if (! haveForegroundWindow) {
#if DEBUG_FOCUS
ALOGD("Dropping event because there is no touched foreground window to receive it.");
#endif
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
// Permission granted to injection into all touched foreground windows.
injectionPermission = INJECTION_PERMISSION_GRANTED;
}
// Check whether windows listening for outside touches are owned by the same UID. If it is
// set the policy flag that we will not reveal coordinate information to this window.
if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
sp<InputWindowHandle> foregroundWindowHandle =
mTempTouchState.getFirstForegroundWindowHandle();
const int32_t foregroundWindowUid = foregroundWindowHandle->getInfo()->ownerUid;
for (size_t i = 0; i < mTempTouchState.windows.size(); i++) {
const TouchedWindow& touchedWindow = mTempTouchState.windows[i];
if (touchedWindow.targetFlags & InputTarget::FLAG_DISPATCH_AS_OUTSIDE) {
sp<InputWindowHandle> inputWindowHandle = touchedWindow.windowHandle;
if (inputWindowHandle->getInfo()->ownerUid != foregroundWindowUid) {
mTempTouchState.addOrUpdateWindow(inputWindowHandle,
InputTarget::FLAG_ZERO_COORDS, BitSet32(0));
}
}
}
}
// Ensure all touched foreground windows are ready for new input.
for (size_t i = 0; i < mTempTouchState.windows.size(); i++) {
const TouchedWindow& touchedWindow = mTempTouchState.windows[i];
if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) {
// If the touched window is paused then keep waiting.
if (touchedWindow.windowHandle->getInfo()->paused) {
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
NULL, touchedWindow.windowHandle, nextWakeupTime,
"Waiting because the touched window is paused.");
goto Unresponsive;
}
// If the touched window is still working on previous events then keep waiting.
if (!isWindowReadyForMoreInputLocked(currentTime, touchedWindow.windowHandle, entry)) {
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
NULL, touchedWindow.windowHandle, nextWakeupTime,
"Waiting because the touched window has not finished "
"processing the input events that were previously delivered to it.");
goto Unresponsive;
}
}
}
// If this is the first pointer going down and the touched window has a wallpaper
// then also add the touched wallpaper windows so they are locked in for the duration
// of the touch gesture.
// We do not collect wallpapers during HOVER_MOVE or SCROLL because the wallpaper
// engine only supports touch events. We would need to add a mechanism similar
// to View.onGenericMotionEvent to enable wallpapers to handle these events.
if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
sp<InputWindowHandle> foregroundWindowHandle =
mTempTouchState.getFirstForegroundWindowHandle();
if (foregroundWindowHandle->getInfo()->hasWallpaper) {
for (size_t i = 0; i < mWindowHandles.size(); i++) {
sp<InputWindowHandle> windowHandle = mWindowHandles.itemAt(i);
const InputWindowInfo* info = windowHandle->getInfo();
if (info->displayId == displayId
&& windowHandle->getInfo()->layoutParamsType
== InputWindowInfo::TYPE_WALLPAPER) {
mTempTouchState.addOrUpdateWindow(windowHandle,
InputTarget::FLAG_WINDOW_IS_OBSCURED
| InputTarget::FLAG_DISPATCH_AS_IS,
BitSet32(0));
}
}
}
}
// Success! Output targets.
injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
for (size_t i = 0; i < mTempTouchState.windows.size(); i++) {
const TouchedWindow& touchedWindow = mTempTouchState.windows.itemAt(i);
addWindowTargetLocked(touchedWindow.windowHandle, touchedWindow.targetFlags,
touchedWindow.pointerIds, inputTargets);
}
// Drop the outside or hover touch windows since we will not care about them
// in the next iteration.
mTempTouchState.filterNonAsIsTouchWindows();
Failed:
// Check injection permission once and for all.
if (injectionPermission == INJECTION_PERMISSION_UNKNOWN) {
if (checkInjectionPermission(NULL, entry->injectionState)) {
injectionPermission = INJECTION_PERMISSION_GRANTED;
} else {
injectionPermission = INJECTION_PERMISSION_DENIED;
}
}
// Update final pieces of touch state if the injector had permission.
if (injectionPermission == INJECTION_PERMISSION_GRANTED) {
if (!wrongDevice) {
if (switchedDevice) {
#if DEBUG_FOCUS
ALOGD("Conflicting pointer actions: Switched to a different device.");
#endif
*outConflictingPointerActions = true;
}
if (isHoverAction) {
// Started hovering, therefore no longer down.
if (oldState && oldState->down) {
#if DEBUG_FOCUS
ALOGD("Conflicting pointer actions: Hover received while pointer was down.");
#endif
*outConflictingPointerActions = true;
}
mTempTouchState.reset();
if (maskedAction == AMOTION_EVENT_ACTION_HOVER_ENTER
|| maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE) {
mTempTouchState.deviceId = entry->deviceId;
mTempTouchState.source = entry->source;
mTempTouchState.displayId = displayId;
}
} else if (maskedAction == AMOTION_EVENT_ACTION_UP
|| maskedAction == AMOTION_EVENT_ACTION_CANCEL) {
// All pointers up or canceled.
mTempTouchState.reset();
} else if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
// First pointer went down.
if (oldState && oldState->down) {
#if DEBUG_FOCUS
ALOGD("Conflicting pointer actions: Down received while already down.");
#endif
*outConflictingPointerActions = true;
}
} else if (maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) {
// One pointer went up.
if (isSplit) {
int32_t pointerIndex = getMotionEventActionPointerIndex(action);
uint32_t pointerId = entry->pointerProperties[pointerIndex].id;
for (size_t i = 0; i < mTempTouchState.windows.size(); ) {
TouchedWindow& touchedWindow = mTempTouchState.windows.editItemAt(i);
if (touchedWindow.targetFlags & InputTarget::FLAG_SPLIT) {
touchedWindow.pointerIds.clearBit(pointerId);
if (touchedWindow.pointerIds.isEmpty()) {
mTempTouchState.windows.removeAt(i);
continue;
}
}
i += 1;
}
}
}
// Save changes unless the action was scroll in which case the temporary touch
// state was only valid for this one action.
if (maskedAction != AMOTION_EVENT_ACTION_SCROLL) {
if (mTempTouchState.displayId >= 0) {
if (oldStateIndex >= 0) {
mTouchStatesByDisplay.editValueAt(oldStateIndex).copyFrom(mTempTouchState);
} else {
mTouchStatesByDisplay.add(displayId, mTempTouchState);
}
} else if (oldStateIndex >= 0) {
mTouchStatesByDisplay.removeItemsAt(oldStateIndex);
}
}
// Update hover state.
mLastHoverWindowHandle = newHoverWindowHandle;
}
} else {
#if DEBUG_FOCUS
ALOGD("Not updating touch focus because injection was denied.");
#endif
}
Unresponsive:
// Reset temporary touch state to ensure we release unnecessary references to input channels.
mTempTouchState.reset();
nsecs_t timeSpentWaitingForApplication = getTimeSpentWaitingForApplicationLocked(currentTime);
updateDispatchStatisticsLocked(currentTime, entry,
injectionResult, timeSpentWaitingForApplication);
#if DEBUG_FOCUS
ALOGD("findTouchedWindow finished: injectionResult=%d, injectionPermission=%d, "
"timeSpentWaitingForApplication=%0.1fms",
injectionResult, injectionPermission, timeSpentWaitingForApplication / 1000000.0);
#endif
return injectionResult;
}
void InputDispatcher::addWindowTargetLocked(const sp<InputWindowHandle>& windowHandle,
int32_t targetFlags, BitSet32 pointerIds, Vector<InputTarget>& inputTargets) {
inputTargets.push();
const InputWindowInfo* windowInfo = windowHandle->getInfo();
InputTarget& target = inputTargets.editTop();
target.inputChannel = windowInfo->inputChannel;
target.flags = targetFlags;
target.xOffset = - windowInfo->frameLeft;
target.yOffset = - windowInfo->frameTop;
target.scaleFactor = windowInfo->scaleFactor;
target.pointerIds = pointerIds;
}
void InputDispatcher::addMonitoringTargetsLocked(Vector<InputTarget>& inputTargets) {
for (size_t i = 0; i < mMonitoringChannels.size(); i++) {
inputTargets.push();
InputTarget& target = inputTargets.editTop();
target.inputChannel = mMonitoringChannels[i];
target.flags = InputTarget::FLAG_DISPATCH_AS_IS;
target.xOffset = 0;
target.yOffset = 0;
target.pointerIds.clear();
target.scaleFactor = 1.0f;
}
}
bool InputDispatcher::checkInjectionPermission(const sp<InputWindowHandle>& windowHandle,
const InjectionState* injectionState) {
if (injectionState
&& (windowHandle == NULL
|| windowHandle->getInfo()->ownerUid != injectionState->injectorUid)
&& !hasInjectionPermission(injectionState->injectorPid, injectionState->injectorUid)) {
if (windowHandle != NULL) {
ALOGW("Permission denied: injecting event from pid %d uid %d to window %s "
"owned by uid %d",
injectionState->injectorPid, injectionState->injectorUid,
windowHandle->getName().string(),
windowHandle->getInfo()->ownerUid);
} else {
ALOGW("Permission denied: injecting event from pid %d uid %d",
injectionState->injectorPid, injectionState->injectorUid);
}
return false;
}
return true;
}
bool InputDispatcher::isWindowObscuredAtPointLocked(
const sp<InputWindowHandle>& windowHandle, int32_t x, int32_t y) const {
int32_t displayId = windowHandle->getInfo()->displayId;
size_t numWindows = mWindowHandles.size();
for (size_t i = 0; i < numWindows; i++) {
sp<InputWindowHandle> otherHandle = mWindowHandles.itemAt(i);
if (otherHandle == windowHandle) {
break;
}
const InputWindowInfo* otherInfo = otherHandle->getInfo();
if (otherInfo->displayId == displayId
&& otherInfo->visible && !otherInfo->isTrustedOverlay()
&& otherInfo->frameContainsPoint(x, y)) {
return true;
}
}
return false;
}
bool InputDispatcher::isWindowReadyForMoreInputLocked(nsecs_t currentTime,
const sp<InputWindowHandle>& windowHandle, const EventEntry* eventEntry) {
ssize_t connectionIndex = getConnectionIndexLocked(windowHandle->getInputChannel());
if (connectionIndex >= 0) {
sp<Connection> connection = mConnectionsByFd.valueAt(connectionIndex);
if (connection->inputPublisherBlocked) {
return false;
}
if (eventEntry->type == EventEntry::TYPE_KEY) {
// If the event is a key event, then we must wait for all previous events to
// complete before delivering it because previous events may have the
// side-effect of transferring focus to a different window and we want to
// ensure that the following keys are sent to the new window.
//
// Suppose the user touches a button in a window then immediately presses "A".
// If the button causes a pop-up window to appear then we want to ensure that
// the "A" key is delivered to the new pop-up window. This is because users
// often anticipate pending UI changes when typing on a keyboard.
// To obtain this behavior, we must serialize key events with respect to all
// prior input events.
return connection->outboundQueue.isEmpty()
&& connection->waitQueue.isEmpty();
}
// Touch events can always be sent to a window immediately because the user intended
// to touch whatever was visible at the time. Even if focus changes or a new
// window appears moments later, the touch event was meant to be delivered to
// whatever window happened to be on screen at the time.
//
// Generic motion events, such as trackball or joystick events are a little trickier.
// Like key events, generic motion events are delivered to the focused window.
// Unlike key events, generic motion events don't tend to transfer focus to other
// windows and it is not important for them to be serialized. So we prefer to deliver
// generic motion events as soon as possible to improve efficiency and reduce lag
// through batching.
//
// The one case where we pause input event delivery is when the wait queue is piling
// up with lots of events because the application is not responding.
// This condition ensures that ANRs are detected reliably.
if (!connection->waitQueue.isEmpty()
&& currentTime >= connection->waitQueue.head->deliveryTime
+ STREAM_AHEAD_EVENT_TIMEOUT) {
return false;
}
}
return true;
}
String8 InputDispatcher::getApplicationWindowLabelLocked(
const sp<InputApplicationHandle>& applicationHandle,
const sp<InputWindowHandle>& windowHandle) {
if (applicationHandle != NULL) {
if (windowHandle != NULL) {
String8 label(applicationHandle->getName());
label.append(" - ");
label.append(windowHandle->getName());
return label;
} else {
return applicationHandle->getName();
}
} else if (windowHandle != NULL) {
return windowHandle->getName();
} else {
return String8("<unknown application or window>");
}
}
void InputDispatcher::pokeUserActivityLocked(const EventEntry* eventEntry) {
if (mFocusedWindowHandle != NULL) {
const InputWindowInfo* info = mFocusedWindowHandle->getInfo();
if (info->inputFeatures & InputWindowInfo::INPUT_FEATURE_DISABLE_USER_ACTIVITY) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("Not poking user activity: disabled by window '%s'.", info->name.string());
#endif
return;
}
}
int32_t eventType = USER_ACTIVITY_EVENT_OTHER;
switch (eventEntry->type) {
case EventEntry::TYPE_MOTION: {
const MotionEntry* motionEntry = static_cast<const MotionEntry*>(eventEntry);
if (motionEntry->action == AMOTION_EVENT_ACTION_CANCEL) {
return;
}
if (MotionEvent::isTouchEvent(motionEntry->source, motionEntry->action)) {
eventType = USER_ACTIVITY_EVENT_TOUCH;
}
break;
}
case EventEntry::TYPE_KEY: {
const KeyEntry* keyEntry = static_cast<const KeyEntry*>(eventEntry);
if (keyEntry->flags & AKEY_EVENT_FLAG_CANCELED) {
return;
}
eventType = USER_ACTIVITY_EVENT_BUTTON;
break;
}
}
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doPokeUserActivityLockedInterruptible);
commandEntry->eventTime = eventEntry->eventTime;
commandEntry->userActivityEventType = eventType;
}
void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ prepareDispatchCycle - flags=0x%08x, "
"xOffset=%f, yOffset=%f, scaleFactor=%f, "
"pointerIds=0x%x",
connection->getInputChannelName(), inputTarget->flags,
inputTarget->xOffset, inputTarget->yOffset,
inputTarget->scaleFactor, inputTarget->pointerIds.value);
#endif
// Skip this event if the connection status is not normal.
// We don't want to enqueue additional outbound events if the connection is broken.
if (connection->status != Connection::STATUS_NORMAL) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Dropping event because the channel status is %s",
connection->getInputChannelName(), connection->getStatusLabel());
#endif
return;
}
// Split a motion event if needed.
if (inputTarget->flags & InputTarget::FLAG_SPLIT) {
ALOG_ASSERT(eventEntry->type == EventEntry::TYPE_MOTION);
MotionEntry* originalMotionEntry = static_cast<MotionEntry*>(eventEntry);
if (inputTarget->pointerIds.count() != originalMotionEntry->pointerCount) {
MotionEntry* splitMotionEntry = splitMotionEvent(
originalMotionEntry, inputTarget->pointerIds);
if (!splitMotionEntry) {
return; // split event was dropped
}
#if DEBUG_FOCUS
ALOGD("channel '%s' ~ Split motion event.",
connection->getInputChannelName());
logOutboundMotionDetailsLocked(" ", splitMotionEntry);
#endif
enqueueDispatchEntriesLocked(currentTime, connection,
splitMotionEntry, inputTarget);
splitMotionEntry->release();
return;
}
}
// Not splitting. Enqueue dispatch entries for the event as is.
enqueueDispatchEntriesLocked(currentTime, connection, eventEntry, inputTarget);
}
void InputDispatcher::enqueueDispatchEntriesLocked(nsecs_t currentTime,
const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget) {
bool wasEmpty = connection->outboundQueue.isEmpty();
// Enqueue dispatch entries for the requested modes.
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_OUTSIDE);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_IS);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER);
// If the outbound queue was previously empty, start the dispatch cycle going.
if (wasEmpty && !connection->outboundQueue.isEmpty()) {
startDispatchCycleLocked(currentTime, connection);
}
}
void InputDispatcher::enqueueDispatchEntryLocked(
const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget,
int32_t dispatchMode) {
int32_t inputTargetFlags = inputTarget->flags;
if (!(inputTargetFlags & dispatchMode)) {
return;
}
inputTargetFlags = (inputTargetFlags & ~InputTarget::FLAG_DISPATCH_MASK) | dispatchMode;
// This is a new event.
// Enqueue a new dispatch entry onto the outbound queue for this connection.
DispatchEntry* dispatchEntry = new DispatchEntry(eventEntry, // increments ref
inputTargetFlags, inputTarget->xOffset, inputTarget->yOffset,
inputTarget->scaleFactor);
// Apply target flags and update the connection's input state.
switch (eventEntry->type) {
case EventEntry::TYPE_KEY: {
KeyEntry* keyEntry = static_cast<KeyEntry*>(eventEntry);
dispatchEntry->resolvedAction = keyEntry->action;
dispatchEntry->resolvedFlags = keyEntry->flags;
if (!connection->inputState.trackKey(keyEntry,
dispatchEntry->resolvedAction, dispatchEntry->resolvedFlags)) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ enqueueDispatchEntryLocked: skipping inconsistent key event",
connection->getInputChannelName());
#endif
delete dispatchEntry;
return; // skip the inconsistent event
}
break;
}
case EventEntry::TYPE_MOTION: {
MotionEntry* motionEntry = static_cast<MotionEntry*>(eventEntry);
if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_OUTSIDE) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_OUTSIDE;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_EXIT;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_ENTER;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_CANCEL;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_DOWN;
} else {
dispatchEntry->resolvedAction = motionEntry->action;
}
if (dispatchEntry->resolvedAction == AMOTION_EVENT_ACTION_HOVER_MOVE
&& !connection->inputState.isHovering(
motionEntry->deviceId, motionEntry->source, motionEntry->displayId)) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ enqueueDispatchEntryLocked: filling in missing hover enter event",
connection->getInputChannelName());
#endif
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_ENTER;
}
dispatchEntry->resolvedFlags = motionEntry->flags;
if (dispatchEntry->targetFlags & InputTarget::FLAG_WINDOW_IS_OBSCURED) {
dispatchEntry->resolvedFlags |= AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED;
}
if (!connection->inputState.trackMotion(motionEntry,
dispatchEntry->resolvedAction, dispatchEntry->resolvedFlags)) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ enqueueDispatchEntryLocked: skipping inconsistent motion event",
connection->getInputChannelName());
#endif
delete dispatchEntry;
return; // skip the inconsistent event
}
break;
}
}
// Remember that we are waiting for this dispatch to complete.
if (dispatchEntry->hasForegroundTarget()) {
incrementPendingForegroundDispatchesLocked(eventEntry);
}
// Enqueue the dispatch entry.
connection->outboundQueue.enqueueAtTail(dispatchEntry);
traceOutboundQueueLengthLocked(connection);
}
void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ startDispatchCycle",
connection->getInputChannelName());
#endif
while (connection->status == Connection::STATUS_NORMAL
&& !connection->outboundQueue.isEmpty()) {
DispatchEntry* dispatchEntry = connection->outboundQueue.head;
dispatchEntry->deliveryTime = currentTime;
// Publish the event.
status_t status;
EventEntry* eventEntry = dispatchEntry->eventEntry;
switch (eventEntry->type) {
case EventEntry::TYPE_KEY: {
KeyEntry* keyEntry = static_cast<KeyEntry*>(eventEntry);
// Publish the key event.
status = connection->inputPublisher.publishKeyEvent(dispatchEntry->seq,
keyEntry->deviceId, keyEntry->source,
dispatchEntry->resolvedAction, dispatchEntry->resolvedFlags,
keyEntry->keyCode, keyEntry->scanCode,
keyEntry->metaState, keyEntry->repeatCount, keyEntry->downTime,
keyEntry->eventTime);
break;
}
case EventEntry::TYPE_MOTION: {
MotionEntry* motionEntry = static_cast<MotionEntry*>(eventEntry);
PointerCoords scaledCoords[MAX_POINTERS];
const PointerCoords* usingCoords = motionEntry->pointerCoords;
// Set the X and Y offset depending on the input source.
float xOffset, yOffset, scaleFactor;
if ((motionEntry->source & AINPUT_SOURCE_CLASS_POINTER)
&& !(dispatchEntry->targetFlags & InputTarget::FLAG_ZERO_COORDS)) {
scaleFactor = dispatchEntry->scaleFactor;
xOffset = dispatchEntry->xOffset * scaleFactor;
yOffset = dispatchEntry->yOffset * scaleFactor;
if (scaleFactor != 1.0f) {
for (size_t i = 0; i < motionEntry->pointerCount; i++) {
scaledCoords[i] = motionEntry->pointerCoords[i];
scaledCoords[i].scale(scaleFactor);
}
usingCoords = scaledCoords;
}
} else {
xOffset = 0.0f;
yOffset = 0.0f;
scaleFactor = 1.0f;
// We don't want the dispatch target to know.
if (dispatchEntry->targetFlags & InputTarget::FLAG_ZERO_COORDS) {
for (size_t i = 0; i < motionEntry->pointerCount; i++) {
scaledCoords[i].clear();
}
usingCoords = scaledCoords;
}
}
// Publish the motion event.
status = connection->inputPublisher.publishMotionEvent(dispatchEntry->seq,
motionEntry->deviceId, motionEntry->source,
dispatchEntry->resolvedAction, dispatchEntry->resolvedFlags,
motionEntry->edgeFlags, motionEntry->metaState, motionEntry->buttonState,
xOffset, yOffset,
motionEntry->xPrecision, motionEntry->yPrecision,
motionEntry->downTime, motionEntry->eventTime,
motionEntry->pointerCount, motionEntry->pointerProperties,
usingCoords);
break;
}
default:
ALOG_ASSERT(false);
return;
}
// Check the result.
if (status) {
if (status == WOULD_BLOCK) {
if (connection->waitQueue.isEmpty()) {
ALOGE("channel '%s' ~ Could not publish event because the pipe is full. "
"This is unexpected because the wait queue is empty, so the pipe "
"should be empty and we shouldn't have any problems writing an "
"event to it, status=%d", connection->getInputChannelName(), status);
abortBrokenDispatchCycleLocked(currentTime, connection, true /*notify*/);
} else {
// Pipe is full and we are waiting for the app to finish process some events
// before sending more events to it.
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Could not publish event because the pipe is full, "
"waiting for the application to catch up",
connection->getInputChannelName());
#endif
connection->inputPublisherBlocked = true;
}
} else {
ALOGE("channel '%s' ~ Could not publish event due to an unexpected error, "
"status=%d", connection->getInputChannelName(), status);
abortBrokenDispatchCycleLocked(currentTime, connection, true /*notify*/);
}
return;
}
// Re-enqueue the event on the wait queue.
connection->outboundQueue.dequeue(dispatchEntry);
traceOutboundQueueLengthLocked(connection);
connection->waitQueue.enqueueAtTail(dispatchEntry);
traceWaitQueueLengthLocked(connection);
}
}
void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, uint32_t seq, bool handled) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ finishDispatchCycle - seq=%u, handled=%s",
connection->getInputChannelName(), seq, toString(handled));
#endif
connection->inputPublisherBlocked = false;
if (connection->status == Connection::STATUS_BROKEN
|| connection->status == Connection::STATUS_ZOMBIE) {
return;
}
// Notify other system components and prepare to start the next dispatch cycle.
onDispatchCycleFinishedLocked(currentTime, connection, seq, handled);
}
void InputDispatcher::abortBrokenDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, bool notify) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ abortBrokenDispatchCycle - notify=%s",
connection->getInputChannelName(), toString(notify));
#endif
// Clear the dispatch queues.
drainDispatchQueueLocked(&connection->outboundQueue);
traceOutboundQueueLengthLocked(connection);
drainDispatchQueueLocked(&connection->waitQueue);
traceWaitQueueLengthLocked(connection);
// The connection appears to be unrecoverably broken.
// Ignore already broken or zombie connections.
if (connection->status == Connection::STATUS_NORMAL) {
connection->status = Connection::STATUS_BROKEN;
if (notify) {
// Notify other system components.
onDispatchCycleBrokenLocked(currentTime, connection);
}
}
}
void InputDispatcher::drainDispatchQueueLocked(Queue<DispatchEntry>* queue) {
while (!queue->isEmpty()) {
DispatchEntry* dispatchEntry = queue->dequeueAtHead();
releaseDispatchEntryLocked(dispatchEntry);
}
}
void InputDispatcher::releaseDispatchEntryLocked(DispatchEntry* dispatchEntry) {
if (dispatchEntry->hasForegroundTarget()) {
decrementPendingForegroundDispatchesLocked(dispatchEntry->eventEntry);
}
delete dispatchEntry;
}
int InputDispatcher::handleReceiveCallback(int fd, int events, void* data) {
InputDispatcher* d = static_cast<InputDispatcher*>(data);
{ // acquire lock
AutoMutex _l(d->mLock);
ssize_t connectionIndex = d->mConnectionsByFd.indexOfKey(fd);
if (connectionIndex < 0) {
ALOGE("Received spurious receive callback for unknown input channel. "
"fd=%d, events=0x%x", fd, events);
return 0; // remove the callback
}
bool notify;
sp<Connection> connection = d->mConnectionsByFd.valueAt(connectionIndex);
if (!(events & (ALOOPER_EVENT_ERROR | ALOOPER_EVENT_HANGUP))) {
if (!(events & ALOOPER_EVENT_INPUT)) {
ALOGW("channel '%s' ~ Received spurious callback for unhandled poll event. "
"events=0x%x", connection->getInputChannelName(), events);
return 1;
}
nsecs_t currentTime = now();
bool gotOne = false;
status_t status;
for (;;) {
uint32_t seq;
bool handled;
status = connection->inputPublisher.receiveFinishedSignal(&seq, &handled);
if (status) {
break;
}
d->finishDispatchCycleLocked(currentTime, connection, seq, handled);
gotOne = true;
}
if (gotOne) {
d->runCommandsLockedInterruptible();
if (status == WOULD_BLOCK) {
return 1;
}
}
notify = status != DEAD_OBJECT || !connection->monitor;
if (notify) {
ALOGE("channel '%s' ~ Failed to receive finished signal. status=%d",
connection->getInputChannelName(), status);
}
} else {
// Monitor channels are never explicitly unregistered.
// We do it automatically when the remote endpoint is closed so don't warn
// about them.
notify = !connection->monitor;
if (notify) {
ALOGW("channel '%s' ~ Consumer closed input channel or an error occurred. "
"events=0x%x", connection->getInputChannelName(), events);
}
}
// Unregister the channel.
d->unregisterInputChannelLocked(connection->inputChannel, notify);
return 0; // remove the callback
} // release lock
}
void InputDispatcher::synthesizeCancelationEventsForAllConnectionsLocked(
const CancelationOptions& options) {
for (size_t i = 0; i < mConnectionsByFd.size(); i++) {
synthesizeCancelationEventsForConnectionLocked(
mConnectionsByFd.valueAt(i), options);
}
}
void InputDispatcher::synthesizeCancelationEventsForInputChannelLocked(
const sp<InputChannel>& channel, const CancelationOptions& options) {
ssize_t index = getConnectionIndexLocked(channel);
if (index >= 0) {
synthesizeCancelationEventsForConnectionLocked(
mConnectionsByFd.valueAt(index), options);
}
}
void InputDispatcher::synthesizeCancelationEventsForConnectionLocked(
const sp<Connection>& connection, const CancelationOptions& options) {
if (connection->status == Connection::STATUS_BROKEN) {
return;
}
nsecs_t currentTime = now();
Vector<EventEntry*> cancelationEvents;
connection->inputState.synthesizeCancelationEvents(currentTime,
cancelationEvents, options);
if (!cancelationEvents.isEmpty()) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("channel '%s' ~ Synthesized %d cancelation events to bring channel back in sync "
"with reality: %s, mode=%d.",
connection->getInputChannelName(), cancelationEvents.size(),
options.reason, options.mode);
#endif
for (size_t i = 0; i < cancelationEvents.size(); i++) {
EventEntry* cancelationEventEntry = cancelationEvents.itemAt(i);
switch (cancelationEventEntry->type) {
case EventEntry::TYPE_KEY:
logOutboundKeyDetailsLocked("cancel - ",
static_cast<KeyEntry*>(cancelationEventEntry));
break;
case EventEntry::TYPE_MOTION:
logOutboundMotionDetailsLocked("cancel - ",
static_cast<MotionEntry*>(cancelationEventEntry));
break;
}
InputTarget target;
sp<InputWindowHandle> windowHandle = getWindowHandleLocked(connection->inputChannel);
if (windowHandle != NULL) {
const InputWindowInfo* windowInfo = windowHandle->getInfo();
target.xOffset = -windowInfo->frameLeft;
target.yOffset = -windowInfo->frameTop;
target.scaleFactor = windowInfo->scaleFactor;
} else {
target.xOffset = 0;
target.yOffset = 0;
target.scaleFactor = 1.0f;
}
target.inputChannel = connection->inputChannel;
target.flags = InputTarget::FLAG_DISPATCH_AS_IS;
enqueueDispatchEntryLocked(connection, cancelationEventEntry, // increments ref
&target, InputTarget::FLAG_DISPATCH_AS_IS);
cancelationEventEntry->release();
}
startDispatchCycleLocked(currentTime, connection);
}
}
InputDispatcher::MotionEntry*
InputDispatcher::splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds) {
ALOG_ASSERT(pointerIds.value != 0);
uint32_t splitPointerIndexMap[MAX_POINTERS];
PointerProperties splitPointerProperties[MAX_POINTERS];
PointerCoords splitPointerCoords[MAX_POINTERS];
uint32_t originalPointerCount = originalMotionEntry->pointerCount;
uint32_t splitPointerCount = 0;
for (uint32_t originalPointerIndex = 0; originalPointerIndex < originalPointerCount;
originalPointerIndex++) {
const PointerProperties& pointerProperties =
originalMotionEntry->pointerProperties[originalPointerIndex];
uint32_t pointerId = uint32_t(pointerProperties.id);
if (pointerIds.hasBit(pointerId)) {
splitPointerIndexMap[splitPointerCount] = originalPointerIndex;
splitPointerProperties[splitPointerCount].copyFrom(pointerProperties);
splitPointerCoords[splitPointerCount].copyFrom(
originalMotionEntry->pointerCoords[originalPointerIndex]);
splitPointerCount += 1;
}
}
if (splitPointerCount != pointerIds.count()) {
// This is bad. We are missing some of the pointers that we expected to deliver.
// Most likely this indicates that we received an ACTION_MOVE events that has
// different pointer ids than we expected based on the previous ACTION_DOWN
// or ACTION_POINTER_DOWN events that caused us to decide to split the pointers
// in this way.
ALOGW("Dropping split motion event because the pointer count is %d but "
"we expected there to be %d pointers. This probably means we received "
"a broken sequence of pointer ids from the input device.",
splitPointerCount, pointerIds.count());
return NULL;
}
int32_t action = originalMotionEntry->action;
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
if (maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN
|| maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) {
int32_t originalPointerIndex = getMotionEventActionPointerIndex(action);
const PointerProperties& pointerProperties =
originalMotionEntry->pointerProperties[originalPointerIndex];
uint32_t pointerId = uint32_t(pointerProperties.id);
if (pointerIds.hasBit(pointerId)) {
if (pointerIds.count() == 1) {
// The first/last pointer went down/up.
action = maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN
? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP;
} else {
// A secondary pointer went down/up.
uint32_t splitPointerIndex = 0;
while (pointerId != uint32_t(splitPointerProperties[splitPointerIndex].id)) {
splitPointerIndex += 1;
}
action = maskedAction | (splitPointerIndex
<< AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
}
} else {
// An unrelated pointer changed.
action = AMOTION_EVENT_ACTION_MOVE;
}
}
MotionEntry* splitMotionEntry = new MotionEntry(
originalMotionEntry->eventTime,
originalMotionEntry->deviceId,
originalMotionEntry->source,
originalMotionEntry->policyFlags,
action,
originalMotionEntry->flags,
originalMotionEntry->metaState,
originalMotionEntry->buttonState,
originalMotionEntry->edgeFlags,
originalMotionEntry->xPrecision,
originalMotionEntry->yPrecision,
originalMotionEntry->downTime,
originalMotionEntry->displayId,
splitPointerCount, splitPointerProperties, splitPointerCoords, 0, 0);
if (originalMotionEntry->injectionState) {
splitMotionEntry->injectionState = originalMotionEntry->injectionState;
splitMotionEntry->injectionState->refCount += 1;
}
return splitMotionEntry;
}
void InputDispatcher::notifyConfigurationChanged(const NotifyConfigurationChangedArgs* args) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("notifyConfigurationChanged - eventTime=%lld", args->eventTime);
#endif
bool needWake;
{ // acquire lock
AutoMutex _l(mLock);
ConfigurationChangedEntry* newEntry = new ConfigurationChangedEntry(args->eventTime);
needWake = enqueueInboundEventLocked(newEntry);
} // release lock
if (needWake) {
mLooper->wake();
}
}
void InputDispatcher::notifyKey(const NotifyKeyArgs* args) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("notifyKey - eventTime=%lld, deviceId=%d, source=0x%x, policyFlags=0x%x, action=0x%x, "
"flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, downTime=%lld",
args->eventTime, args->deviceId, args->source, args->policyFlags,
args->action, args->flags, args->keyCode, args->scanCode,
args->metaState, args->downTime);
#endif
if (!validateKeyEvent(args->action)) {
return;
}
uint32_t policyFlags = args->policyFlags;
int32_t flags = args->flags;
int32_t metaState = args->metaState;
if ((policyFlags & POLICY_FLAG_VIRTUAL) || (flags & AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY)) {
policyFlags |= POLICY_FLAG_VIRTUAL;
flags |= AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
}
if (policyFlags & POLICY_FLAG_ALT) {
metaState |= AMETA_ALT_ON | AMETA_ALT_LEFT_ON;
}
if (policyFlags & POLICY_FLAG_ALT_GR) {
metaState |= AMETA_ALT_ON | AMETA_ALT_RIGHT_ON;
}
if (policyFlags & POLICY_FLAG_SHIFT) {
metaState |= AMETA_SHIFT_ON | AMETA_SHIFT_LEFT_ON;
}
if (policyFlags & POLICY_FLAG_CAPS_LOCK) {
metaState |= AMETA_CAPS_LOCK_ON;
}
if (policyFlags & POLICY_FLAG_FUNCTION) {
metaState |= AMETA_FUNCTION_ON;
}
policyFlags |= POLICY_FLAG_TRUSTED;
KeyEvent event;
event.initialize(args->deviceId, args->source, args->action,
flags, args->keyCode, args->scanCode, metaState, 0,
args->downTime, args->eventTime);
mPolicy->interceptKeyBeforeQueueing(&event, /*byref*/ policyFlags);
bool needWake;
{ // acquire lock
mLock.lock();
if (shouldSendKeyToInputFilterLocked(args)) {
mLock.unlock();
policyFlags |= POLICY_FLAG_FILTERED;
if (!mPolicy->filterInputEvent(&event, policyFlags)) {
return; // event was consumed by the filter
}
mLock.lock();
}
int32_t repeatCount = 0;
KeyEntry* newEntry = new KeyEntry(args->eventTime,
args->deviceId, args->source, policyFlags,
args->action, flags, args->keyCode, args->scanCode,
metaState, repeatCount, args->downTime);
needWake = enqueueInboundEventLocked(newEntry);
mLock.unlock();
} // release lock
if (needWake) {
mLooper->wake();
}
}
bool InputDispatcher::shouldSendKeyToInputFilterLocked(const NotifyKeyArgs* args) {
return mInputFilterEnabled;
}
void InputDispatcher::notifyMotion(const NotifyMotionArgs* args) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("notifyMotion - eventTime=%lld, deviceId=%d, source=0x%x, policyFlags=0x%x, "
"action=0x%x, flags=0x%x, metaState=0x%x, buttonState=0x%x, edgeFlags=0x%x, "
"xPrecision=%f, yPrecision=%f, downTime=%lld",
args->eventTime, args->deviceId, args->source, args->policyFlags,
args->action, args->flags, args->metaState, args->buttonState,
args->edgeFlags, args->xPrecision, args->yPrecision, args->downTime);
for (uint32_t i = 0; i < args->pointerCount; i++) {
ALOGD(" Pointer %d: id=%d, toolType=%d, "
"x=%f, y=%f, pressure=%f, size=%f, "
"touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
"orientation=%f",
i, args->pointerProperties[i].id,
args->pointerProperties[i].toolType,
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_X),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_Y),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_PRESSURE),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_SIZE),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION));
}
#endif
if (!validateMotionEvent(args->action, args->pointerCount, args->pointerProperties)) {
return;
}
uint32_t policyFlags = args->policyFlags;
policyFlags |= POLICY_FLAG_TRUSTED;
mPolicy->interceptMotionBeforeQueueing(args->eventTime, /*byref*/ policyFlags);
bool needWake;
{ // acquire lock
mLock.lock();
if (shouldSendMotionToInputFilterLocked(args)) {
mLock.unlock();
MotionEvent event;
event.initialize(args->deviceId, args->source, args->action, args->flags,
args->edgeFlags, args->metaState, args->buttonState, 0, 0,
args->xPrecision, args->yPrecision,
args->downTime, args->eventTime,
args->pointerCount, args->pointerProperties, args->pointerCoords);
policyFlags |= POLICY_FLAG_FILTERED;
if (!mPolicy->filterInputEvent(&event, policyFlags)) {
return; // event was consumed by the filter
}
mLock.lock();
}
// Just enqueue a new motion event.
MotionEntry* newEntry = new MotionEntry(args->eventTime,
args->deviceId, args->source, policyFlags,
args->action, args->flags, args->metaState, args->buttonState,
args->edgeFlags, args->xPrecision, args->yPrecision, args->downTime,
args->displayId,
args->pointerCount, args->pointerProperties, args->pointerCoords, 0, 0);
needWake = enqueueInboundEventLocked(newEntry);
mLock.unlock();
} // release lock
if (needWake) {
mLooper->wake();
}
}
bool InputDispatcher::shouldSendMotionToInputFilterLocked(const NotifyMotionArgs* args) {
// TODO: support sending secondary display events to input filter
return mInputFilterEnabled && isMainDisplay(args->displayId);
}
void InputDispatcher::notifySwitch(const NotifySwitchArgs* args) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("notifySwitch - eventTime=%lld, policyFlags=0x%x, switchValues=0x%08x, switchMask=0x%08x",
args->eventTime, args->policyFlags,
args->switchValues, args->switchMask);
#endif
uint32_t policyFlags = args->policyFlags;
policyFlags |= POLICY_FLAG_TRUSTED;
mPolicy->notifySwitch(args->eventTime,
args->switchValues, args->switchMask, policyFlags);
}
void InputDispatcher::notifyDeviceReset(const NotifyDeviceResetArgs* args) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("notifyDeviceReset - eventTime=%lld, deviceId=%d",
args->eventTime, args->deviceId);
#endif
bool needWake;
{ // acquire lock
AutoMutex _l(mLock);
DeviceResetEntry* newEntry = new DeviceResetEntry(args->eventTime, args->deviceId);
needWake = enqueueInboundEventLocked(newEntry);
} // release lock
if (needWake) {
mLooper->wake();
}
}
int32_t InputDispatcher::injectInputEvent(const InputEvent* event, int32_t displayId,
int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis,
uint32_t policyFlags) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("injectInputEvent - eventType=%d, injectorPid=%d, injectorUid=%d, "
"syncMode=%d, timeoutMillis=%d, policyFlags=0x%08x",
event->getType(), injectorPid, injectorUid, syncMode, timeoutMillis, policyFlags);
#endif
nsecs_t endTime = now() + milliseconds_to_nanoseconds(timeoutMillis);
policyFlags |= POLICY_FLAG_INJECTED;
if (hasInjectionPermission(injectorPid, injectorUid)) {
policyFlags |= POLICY_FLAG_TRUSTED;
}
EventEntry* firstInjectedEntry;
EventEntry* lastInjectedEntry;
switch (event->getType()) {
case AINPUT_EVENT_TYPE_KEY: {
const KeyEvent* keyEvent = static_cast<const KeyEvent*>(event);
int32_t action = keyEvent->getAction();
if (! validateKeyEvent(action)) {
return INPUT_EVENT_INJECTION_FAILED;
}
int32_t flags = keyEvent->getFlags();
if (flags & AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY) {
policyFlags |= POLICY_FLAG_VIRTUAL;
}
if (!(policyFlags & POLICY_FLAG_FILTERED)) {
mPolicy->interceptKeyBeforeQueueing(keyEvent, /*byref*/ policyFlags);
}
mLock.lock();
firstInjectedEntry = new KeyEntry(keyEvent->getEventTime(),
keyEvent->getDeviceId(), keyEvent->getSource(),
policyFlags, action, flags,
keyEvent->getKeyCode(), keyEvent->getScanCode(), keyEvent->getMetaState(),
keyEvent->getRepeatCount(), keyEvent->getDownTime());
lastInjectedEntry = firstInjectedEntry;
break;
}
case AINPUT_EVENT_TYPE_MOTION: {
const MotionEvent* motionEvent = static_cast<const MotionEvent*>(event);
int32_t action = motionEvent->getAction();
size_t pointerCount = motionEvent->getPointerCount();
const PointerProperties* pointerProperties = motionEvent->getPointerProperties();
if (! validateMotionEvent(action, pointerCount, pointerProperties)) {
return INPUT_EVENT_INJECTION_FAILED;
}
if (!(policyFlags & POLICY_FLAG_FILTERED)) {
nsecs_t eventTime = motionEvent->getEventTime();
mPolicy->interceptMotionBeforeQueueing(eventTime, /*byref*/ policyFlags);
}
mLock.lock();
const nsecs_t* sampleEventTimes = motionEvent->getSampleEventTimes();
const PointerCoords* samplePointerCoords = motionEvent->getSamplePointerCoords();
firstInjectedEntry = new MotionEntry(*sampleEventTimes,
motionEvent->getDeviceId(), motionEvent->getSource(), policyFlags,
action, motionEvent->getFlags(),
motionEvent->getMetaState(), motionEvent->getButtonState(),
motionEvent->getEdgeFlags(),
motionEvent->getXPrecision(), motionEvent->getYPrecision(),
motionEvent->getDownTime(), displayId,
uint32_t(pointerCount), pointerProperties, samplePointerCoords,
motionEvent->getXOffset(), motionEvent->getYOffset());
lastInjectedEntry = firstInjectedEntry;
for (size_t i = motionEvent->getHistorySize(); i > 0; i--) {
sampleEventTimes += 1;
samplePointerCoords += pointerCount;
MotionEntry* nextInjectedEntry = new MotionEntry(*sampleEventTimes,
motionEvent->getDeviceId(), motionEvent->getSource(), policyFlags,
action, motionEvent->getFlags(),
motionEvent->getMetaState(), motionEvent->getButtonState(),
motionEvent->getEdgeFlags(),
motionEvent->getXPrecision(), motionEvent->getYPrecision(),
motionEvent->getDownTime(), displayId,
uint32_t(pointerCount), pointerProperties, samplePointerCoords,
motionEvent->getXOffset(), motionEvent->getYOffset());
lastInjectedEntry->next = nextInjectedEntry;
lastInjectedEntry = nextInjectedEntry;
}
break;
}
default:
ALOGW("Cannot inject event of type %d", event->getType());
return INPUT_EVENT_INJECTION_FAILED;
}
InjectionState* injectionState = new InjectionState(injectorPid, injectorUid);
if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) {
injectionState->injectionIsAsync = true;
}
injectionState->refCount += 1;
lastInjectedEntry->injectionState = injectionState;
bool needWake = false;
for (EventEntry* entry = firstInjectedEntry; entry != NULL; ) {
EventEntry* nextEntry = entry->next;
needWake |= enqueueInboundEventLocked(entry);
entry = nextEntry;
}
mLock.unlock();
if (needWake) {
mLooper->wake();
}
int32_t injectionResult;
{ // acquire lock
AutoMutex _l(mLock);
if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) {
injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
} else {
for (;;) {
injectionResult = injectionState->injectionResult;
if (injectionResult != INPUT_EVENT_INJECTION_PENDING) {
break;
}
nsecs_t remainingTimeout = endTime - now();
if (remainingTimeout <= 0) {
#if DEBUG_INJECTION
ALOGD("injectInputEvent - Timed out waiting for injection result "
"to become available.");
#endif
injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT;
break;
}
mInjectionResultAvailableCondition.waitRelative(mLock, remainingTimeout);
}
if (injectionResult == INPUT_EVENT_INJECTION_SUCCEEDED
&& syncMode == INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED) {
while (injectionState->pendingForegroundDispatches != 0) {
#if DEBUG_INJECTION
ALOGD("injectInputEvent - Waiting for %d pending foreground dispatches.",
injectionState->pendingForegroundDispatches);
#endif
nsecs_t remainingTimeout = endTime - now();
if (remainingTimeout <= 0) {
#if DEBUG_INJECTION
ALOGD("injectInputEvent - Timed out waiting for pending foreground "
"dispatches to finish.");
#endif
injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT;
break;
}
mInjectionSyncFinishedCondition.waitRelative(mLock, remainingTimeout);
}
}
}
injectionState->release();
} // release lock
#if DEBUG_INJECTION
ALOGD("injectInputEvent - Finished with result %d. "
"injectorPid=%d, injectorUid=%d",
injectionResult, injectorPid, injectorUid);
#endif
return injectionResult;
}
bool InputDispatcher::hasInjectionPermission(int32_t injectorPid, int32_t injectorUid) {
return injectorUid == 0
|| mPolicy->checkInjectEventsPermissionNonReentrant(injectorPid, injectorUid);
}
void InputDispatcher::setInjectionResultLocked(EventEntry* entry, int32_t injectionResult) {
InjectionState* injectionState = entry->injectionState;
if (injectionState) {
#if DEBUG_INJECTION
ALOGD("Setting input event injection result to %d. "
"injectorPid=%d, injectorUid=%d",
injectionResult, injectionState->injectorPid, injectionState->injectorUid);
#endif
if (injectionState->injectionIsAsync
&& !(entry->policyFlags & POLICY_FLAG_FILTERED)) {
// Log the outcome since the injector did not wait for the injection result.
switch (injectionResult) {
case INPUT_EVENT_INJECTION_SUCCEEDED:
ALOGV("Asynchronous input event injection succeeded.");
break;
case INPUT_EVENT_INJECTION_FAILED:
ALOGW("Asynchronous input event injection failed.");
break;
case INPUT_EVENT_INJECTION_PERMISSION_DENIED:
ALOGW("Asynchronous input event injection permission denied.");
break;
case INPUT_EVENT_INJECTION_TIMED_OUT:
ALOGW("Asynchronous input event injection timed out.");
break;
}
}
injectionState->injectionResult = injectionResult;
mInjectionResultAvailableCondition.broadcast();
}
}
void InputDispatcher::incrementPendingForegroundDispatchesLocked(EventEntry* entry) {
InjectionState* injectionState = entry->injectionState;
if (injectionState) {
injectionState->pendingForegroundDispatches += 1;
}
}
void InputDispatcher::decrementPendingForegroundDispatchesLocked(EventEntry* entry) {
InjectionState* injectionState = entry->injectionState;
if (injectionState) {
injectionState->pendingForegroundDispatches -= 1;
if (injectionState->pendingForegroundDispatches == 0) {
mInjectionSyncFinishedCondition.broadcast();
}
}
}
sp<InputWindowHandle> InputDispatcher::getWindowHandleLocked(
const sp<InputChannel>& inputChannel) const {
size_t numWindows = mWindowHandles.size();
for (size_t i = 0; i < numWindows; i++) {
const sp<InputWindowHandle>& windowHandle = mWindowHandles.itemAt(i);
if (windowHandle->getInputChannel() == inputChannel) {
return windowHandle;
}
}
return NULL;
}
bool InputDispatcher::hasWindowHandleLocked(
const sp<InputWindowHandle>& windowHandle) const {
size_t numWindows = mWindowHandles.size();
for (size_t i = 0; i < numWindows; i++) {
if (mWindowHandles.itemAt(i) == windowHandle) {
return true;
}
}
return false;
}
void InputDispatcher::setInputWindows(const Vector<sp<InputWindowHandle> >& inputWindowHandles) {
#if DEBUG_FOCUS
ALOGD("setInputWindows");
#endif
{ // acquire lock
AutoMutex _l(mLock);
Vector<sp<InputWindowHandle> > oldWindowHandles = mWindowHandles;
mWindowHandles = inputWindowHandles;
sp<InputWindowHandle> newFocusedWindowHandle;
bool foundHoveredWindow = false;
for (size_t i = 0; i < mWindowHandles.size(); i++) {
const sp<InputWindowHandle>& windowHandle = mWindowHandles.itemAt(i);
if (!windowHandle->updateInfo() || windowHandle->getInputChannel() == NULL) {
mWindowHandles.removeAt(i--);
continue;
}
if (windowHandle->getInfo()->hasFocus) {
newFocusedWindowHandle = windowHandle;
}
if (windowHandle == mLastHoverWindowHandle) {
foundHoveredWindow = true;
}
}
if (!foundHoveredWindow) {
mLastHoverWindowHandle = NULL;
}
if (mFocusedWindowHandle != newFocusedWindowHandle) {
if (mFocusedWindowHandle != NULL) {
#if DEBUG_FOCUS
ALOGD("Focus left window: %s",
mFocusedWindowHandle->getName().string());
#endif
sp<InputChannel> focusedInputChannel = mFocusedWindowHandle->getInputChannel();
if (focusedInputChannel != NULL) {
CancelationOptions options(CancelationOptions::CANCEL_NON_POINTER_EVENTS,
"focus left window");
synthesizeCancelationEventsForInputChannelLocked(
focusedInputChannel, options);
}
}
if (newFocusedWindowHandle != NULL) {
#if DEBUG_FOCUS
ALOGD("Focus entered window: %s",
newFocusedWindowHandle->getName().string());
#endif
}
mFocusedWindowHandle = newFocusedWindowHandle;
}
for (size_t d = 0; d < mTouchStatesByDisplay.size(); d++) {
TouchState& state = mTouchStatesByDisplay.editValueAt(d);
for (size_t i = 0; i < state.windows.size(); i++) {
TouchedWindow& touchedWindow = state.windows.editItemAt(i);
if (!hasWindowHandleLocked(touchedWindow.windowHandle)) {
#if DEBUG_FOCUS
ALOGD("Touched window was removed: %s",
touchedWindow.windowHandle->getName().string());
#endif
sp<InputChannel> touchedInputChannel =
touchedWindow.windowHandle->getInputChannel();
if (touchedInputChannel != NULL) {
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS,
"touched window was removed");
synthesizeCancelationEventsForInputChannelLocked(
touchedInputChannel, options);
}
state.windows.removeAt(i--);
}
}
}
// Release information for windows that are no longer present.
// This ensures that unused input channels are released promptly.
// Otherwise, they might stick around until the window handle is destroyed
// which might not happen until the next GC.
for (size_t i = 0; i < oldWindowHandles.size(); i++) {
const sp<InputWindowHandle>& oldWindowHandle = oldWindowHandles.itemAt(i);
if (!hasWindowHandleLocked(oldWindowHandle)) {
#if DEBUG_FOCUS
ALOGD("Window went away: %s", oldWindowHandle->getName().string());
#endif
oldWindowHandle->releaseInfo();
}
}
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
void InputDispatcher::setFocusedApplication(
const sp<InputApplicationHandle>& inputApplicationHandle) {
#if DEBUG_FOCUS
ALOGD("setFocusedApplication");
#endif
{ // acquire lock
AutoMutex _l(mLock);
if (inputApplicationHandle != NULL && inputApplicationHandle->updateInfo()) {
if (mFocusedApplicationHandle != inputApplicationHandle) {
if (mFocusedApplicationHandle != NULL) {
resetANRTimeoutsLocked();
mFocusedApplicationHandle->releaseInfo();
}
mFocusedApplicationHandle = inputApplicationHandle;
}
} else if (mFocusedApplicationHandle != NULL) {
resetANRTimeoutsLocked();
mFocusedApplicationHandle->releaseInfo();
mFocusedApplicationHandle.clear();
}
#if DEBUG_FOCUS
//logDispatchStateLocked();
#endif
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
void InputDispatcher::setInputDispatchMode(bool enabled, bool frozen) {
#if DEBUG_FOCUS
ALOGD("setInputDispatchMode: enabled=%d, frozen=%d", enabled, frozen);
#endif
bool changed;
{ // acquire lock
AutoMutex _l(mLock);
if (mDispatchEnabled != enabled || mDispatchFrozen != frozen) {
if (mDispatchFrozen && !frozen) {
resetANRTimeoutsLocked();
}
if (mDispatchEnabled && !enabled) {
resetAndDropEverythingLocked("dispatcher is being disabled");
}
mDispatchEnabled = enabled;
mDispatchFrozen = frozen;
changed = true;
} else {
changed = false;
}
#if DEBUG_FOCUS
//logDispatchStateLocked();
#endif
} // release lock
if (changed) {
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
}
void InputDispatcher::setInputFilterEnabled(bool enabled) {
#if DEBUG_FOCUS
ALOGD("setInputFilterEnabled: enabled=%d", enabled);
#endif
{ // acquire lock
AutoMutex _l(mLock);
if (mInputFilterEnabled == enabled) {
return;
}
mInputFilterEnabled = enabled;
resetAndDropEverythingLocked("input filter is being enabled or disabled");
} // release lock
// Wake up poll loop since there might be work to do to drop everything.
mLooper->wake();
}
bool InputDispatcher::transferTouchFocus(const sp<InputChannel>& fromChannel,
const sp<InputChannel>& toChannel) {
#if DEBUG_FOCUS
ALOGD("transferTouchFocus: fromChannel=%s, toChannel=%s",
fromChannel->getName().string(), toChannel->getName().string());
#endif
{ // acquire lock
AutoMutex _l(mLock);
sp<InputWindowHandle> fromWindowHandle = getWindowHandleLocked(fromChannel);
sp<InputWindowHandle> toWindowHandle = getWindowHandleLocked(toChannel);
if (fromWindowHandle == NULL || toWindowHandle == NULL) {
#if DEBUG_FOCUS
ALOGD("Cannot transfer focus because from or to window not found.");
#endif
return false;
}
if (fromWindowHandle == toWindowHandle) {
#if DEBUG_FOCUS
ALOGD("Trivial transfer to same window.");
#endif
return true;
}
if (fromWindowHandle->getInfo()->displayId != toWindowHandle->getInfo()->displayId) {
#if DEBUG_FOCUS
ALOGD("Cannot transfer focus because windows are on different displays.");
#endif
return false;
}
bool found = false;
for (size_t d = 0; d < mTouchStatesByDisplay.size(); d++) {
TouchState& state = mTouchStatesByDisplay.editValueAt(d);
for (size_t i = 0; i < state.windows.size(); i++) {
const TouchedWindow& touchedWindow = state.windows[i];
if (touchedWindow.windowHandle == fromWindowHandle) {
int32_t oldTargetFlags = touchedWindow.targetFlags;
BitSet32 pointerIds = touchedWindow.pointerIds;
state.windows.removeAt(i);
int32_t newTargetFlags = oldTargetFlags
& (InputTarget::FLAG_FOREGROUND
| InputTarget::FLAG_SPLIT | InputTarget::FLAG_DISPATCH_AS_IS);
state.addOrUpdateWindow(toWindowHandle, newTargetFlags, pointerIds);
found = true;
goto Found;
}
}
}
Found:
if (! found) {
#if DEBUG_FOCUS
ALOGD("Focus transfer failed because from window did not have focus.");
#endif
return false;
}
ssize_t fromConnectionIndex = getConnectionIndexLocked(fromChannel);
ssize_t toConnectionIndex = getConnectionIndexLocked(toChannel);
if (fromConnectionIndex >= 0 && toConnectionIndex >= 0) {
sp<Connection> fromConnection = mConnectionsByFd.valueAt(fromConnectionIndex);
sp<Connection> toConnection = mConnectionsByFd.valueAt(toConnectionIndex);
fromConnection->inputState.copyPointerStateTo(toConnection->inputState);
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS,
"transferring touch focus from this window to another window");
synthesizeCancelationEventsForConnectionLocked(fromConnection, options);
}
#if DEBUG_FOCUS
logDispatchStateLocked();
#endif
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
return true;
}
void InputDispatcher::resetAndDropEverythingLocked(const char* reason) {
#if DEBUG_FOCUS
ALOGD("Resetting and dropping all events (%s).", reason);
#endif
CancelationOptions options(CancelationOptions::CANCEL_ALL_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
resetKeyRepeatLocked();
releasePendingEventLocked();
drainInboundQueueLocked();
resetANRTimeoutsLocked();
mTouchStatesByDisplay.clear();
mLastHoverWindowHandle.clear();
}
void InputDispatcher::logDispatchStateLocked() {
String8 dump;
dumpDispatchStateLocked(dump);
char* text = dump.lockBuffer(dump.size());
char* start = text;
while (*start != '\0') {
char* end = strchr(start, '\n');
if (*end == '\n') {
*(end++) = '\0';
}
ALOGD("%s", start);
start = end;
}
}
void InputDispatcher::dumpDispatchStateLocked(String8& dump) {
dump.appendFormat(INDENT "DispatchEnabled: %d\n", mDispatchEnabled);
dump.appendFormat(INDENT "DispatchFrozen: %d\n", mDispatchFrozen);
if (mFocusedApplicationHandle != NULL) {
dump.appendFormat(INDENT "FocusedApplication: name='%s', dispatchingTimeout=%0.3fms\n",
mFocusedApplicationHandle->getName().string(),
mFocusedApplicationHandle->getDispatchingTimeout(
DEFAULT_INPUT_DISPATCHING_TIMEOUT) / 1000000.0);
} else {
dump.append(INDENT "FocusedApplication: <null>\n");
}
dump.appendFormat(INDENT "FocusedWindow: name='%s'\n",
mFocusedWindowHandle != NULL ? mFocusedWindowHandle->getName().string() : "<null>");
if (!mTouchStatesByDisplay.isEmpty()) {
dump.appendFormat(INDENT "TouchStatesByDisplay:\n");
for (size_t i = 0; i < mTouchStatesByDisplay.size(); i++) {
const TouchState& state = mTouchStatesByDisplay.valueAt(i);
dump.appendFormat(INDENT2 "%d: down=%s, split=%s, deviceId=%d, source=0x%08x\n",
state.displayId, toString(state.down), toString(state.split),
state.deviceId, state.source);
if (!state.windows.isEmpty()) {
dump.append(INDENT3 "Windows:\n");
for (size_t i = 0; i < state.windows.size(); i++) {
const TouchedWindow& touchedWindow = state.windows[i];
dump.appendFormat(INDENT4 "%zu: name='%s', pointerIds=0x%0x, targetFlags=0x%x\n",
i, touchedWindow.windowHandle->getName().string(),
touchedWindow.pointerIds.value,
touchedWindow.targetFlags);
}
} else {
dump.append(INDENT3 "Windows: <none>\n");
}
}
} else {
dump.append(INDENT "TouchStates: <no displays touched>\n");
}
if (!mWindowHandles.isEmpty()) {
dump.append(INDENT "Windows:\n");
for (size_t i = 0; i < mWindowHandles.size(); i++) {
const sp<InputWindowHandle>& windowHandle = mWindowHandles.itemAt(i);
const InputWindowInfo* windowInfo = windowHandle->getInfo();
dump.appendFormat(INDENT2 "%zu: name='%s', displayId=%d, "
"paused=%s, hasFocus=%s, hasWallpaper=%s, "
"visible=%s, canReceiveKeys=%s, flags=0x%08x, type=0x%08x, layer=%d, "
"frame=[%d,%d][%d,%d], scale=%f, "
"touchableRegion=",
i, windowInfo->name.string(), windowInfo->displayId,
toString(windowInfo->paused),
toString(windowInfo->hasFocus),
toString(windowInfo->hasWallpaper),
toString(windowInfo->visible),
toString(windowInfo->canReceiveKeys),
windowInfo->layoutParamsFlags, windowInfo->layoutParamsType,
windowInfo->layer,
windowInfo->frameLeft, windowInfo->frameTop,
windowInfo->frameRight, windowInfo->frameBottom,
windowInfo->scaleFactor);
dumpRegion(dump, windowInfo->touchableRegion);
dump.appendFormat(", inputFeatures=0x%08x", windowInfo->inputFeatures);
dump.appendFormat(", ownerPid=%d, ownerUid=%d, dispatchingTimeout=%0.3fms\n",
windowInfo->ownerPid, windowInfo->ownerUid,
windowInfo->dispatchingTimeout / 1000000.0);
}
} else {
dump.append(INDENT "Windows: <none>\n");
}
if (!mMonitoringChannels.isEmpty()) {
dump.append(INDENT "MonitoringChannels:\n");
for (size_t i = 0; i < mMonitoringChannels.size(); i++) {
const sp<InputChannel>& channel = mMonitoringChannels[i];
dump.appendFormat(INDENT2 "%zu: '%s'\n", i, channel->getName().string());
}
} else {
dump.append(INDENT "MonitoringChannels: <none>\n");
}
nsecs_t currentTime = now();
// Dump recently dispatched or dropped events from oldest to newest.
if (!mRecentQueue.isEmpty()) {
dump.appendFormat(INDENT "RecentQueue: length=%u\n", mRecentQueue.count());
for (EventEntry* entry = mRecentQueue.head; entry; entry = entry->next) {
dump.append(INDENT2);
entry->appendDescription(dump);
dump.appendFormat(", age=%0.1fms\n",
(currentTime - entry->eventTime) * 0.000001f);
}
} else {
dump.append(INDENT "RecentQueue: <empty>\n");
}
// Dump event currently being dispatched.
if (mPendingEvent) {
dump.append(INDENT "PendingEvent:\n");
dump.append(INDENT2);
mPendingEvent->appendDescription(dump);
dump.appendFormat(", age=%0.1fms\n",
(currentTime - mPendingEvent->eventTime) * 0.000001f);
} else {
dump.append(INDENT "PendingEvent: <none>\n");
}
// Dump inbound events from oldest to newest.
if (!mInboundQueue.isEmpty()) {
dump.appendFormat(INDENT "InboundQueue: length=%u\n", mInboundQueue.count());
for (EventEntry* entry = mInboundQueue.head; entry; entry = entry->next) {
dump.append(INDENT2);
entry->appendDescription(dump);
dump.appendFormat(", age=%0.1fms\n",
(currentTime - entry->eventTime) * 0.000001f);
}
} else {
dump.append(INDENT "InboundQueue: <empty>\n");
}
if (!mConnectionsByFd.isEmpty()) {
dump.append(INDENT "Connections:\n");
for (size_t i = 0; i < mConnectionsByFd.size(); i++) {
const sp<Connection>& connection = mConnectionsByFd.valueAt(i);
dump.appendFormat(INDENT2 "%zu: channelName='%s', windowName='%s', "
"status=%s, monitor=%s, inputPublisherBlocked=%s\n",
i, connection->getInputChannelName(), connection->getWindowName(),
connection->getStatusLabel(), toString(connection->monitor),
toString(connection->inputPublisherBlocked));
if (!connection->outboundQueue.isEmpty()) {
dump.appendFormat(INDENT3 "OutboundQueue: length=%u\n",
connection->outboundQueue.count());
for (DispatchEntry* entry = connection->outboundQueue.head; entry;
entry = entry->next) {
dump.append(INDENT4);
entry->eventEntry->appendDescription(dump);
dump.appendFormat(", targetFlags=0x%08x, resolvedAction=%d, age=%0.1fms\n",
entry->targetFlags, entry->resolvedAction,
(currentTime - entry->eventEntry->eventTime) * 0.000001f);
}
} else {
dump.append(INDENT3 "OutboundQueue: <empty>\n");
}
if (!connection->waitQueue.isEmpty()) {
dump.appendFormat(INDENT3 "WaitQueue: length=%u\n",
connection->waitQueue.count());
for (DispatchEntry* entry = connection->waitQueue.head; entry;
entry = entry->next) {
dump.append(INDENT4);
entry->eventEntry->appendDescription(dump);
dump.appendFormat(", targetFlags=0x%08x, resolvedAction=%d, "
"age=%0.1fms, wait=%0.1fms\n",
entry->targetFlags, entry->resolvedAction,
(currentTime - entry->eventEntry->eventTime) * 0.000001f,
(currentTime - entry->deliveryTime) * 0.000001f);
}
} else {
dump.append(INDENT3 "WaitQueue: <empty>\n");
}
}
} else {
dump.append(INDENT "Connections: <none>\n");
}
if (isAppSwitchPendingLocked()) {
dump.appendFormat(INDENT "AppSwitch: pending, due in %0.1fms\n",
(mAppSwitchDueTime - now()) / 1000000.0);
} else {
dump.append(INDENT "AppSwitch: not pending\n");
}
dump.append(INDENT "Configuration:\n");
dump.appendFormat(INDENT2 "KeyRepeatDelay: %0.1fms\n",
mConfig.keyRepeatDelay * 0.000001f);
dump.appendFormat(INDENT2 "KeyRepeatTimeout: %0.1fms\n",
mConfig.keyRepeatTimeout * 0.000001f);
}
status_t InputDispatcher::registerInputChannel(const sp<InputChannel>& inputChannel,
const sp<InputWindowHandle>& inputWindowHandle, bool monitor) {
#if DEBUG_REGISTRATION
ALOGD("channel '%s' ~ registerInputChannel - monitor=%s", inputChannel->getName().string(),
toString(monitor));
#endif
{ // acquire lock
AutoMutex _l(mLock);
if (getConnectionIndexLocked(inputChannel) >= 0) {
ALOGW("Attempted to register already registered input channel '%s'",
inputChannel->getName().string());
return BAD_VALUE;
}
sp<Connection> connection = new Connection(inputChannel, inputWindowHandle, monitor);
int fd = inputChannel->getFd();
mConnectionsByFd.add(fd, connection);
if (monitor) {
mMonitoringChannels.push(inputChannel);
}
mLooper->addFd(fd, 0, ALOOPER_EVENT_INPUT, handleReceiveCallback, this);
} // release lock
// Wake the looper because some connections have changed.
mLooper->wake();
return OK;
}
status_t InputDispatcher::unregisterInputChannel(const sp<InputChannel>& inputChannel) {
#if DEBUG_REGISTRATION
ALOGD("channel '%s' ~ unregisterInputChannel", inputChannel->getName().string());
#endif
{ // acquire lock
AutoMutex _l(mLock);
status_t status = unregisterInputChannelLocked(inputChannel, false /*notify*/);
if (status) {
return status;
}
} // release lock
// Wake the poll loop because removing the connection may have changed the current
// synchronization state.
mLooper->wake();
return OK;
}
status_t InputDispatcher::unregisterInputChannelLocked(const sp<InputChannel>& inputChannel,
bool notify) {
ssize_t connectionIndex = getConnectionIndexLocked(inputChannel);
if (connectionIndex < 0) {
ALOGW("Attempted to unregister already unregistered input channel '%s'",
inputChannel->getName().string());
return BAD_VALUE;
}
sp<Connection> connection = mConnectionsByFd.valueAt(connectionIndex);
mConnectionsByFd.removeItemsAt(connectionIndex);
if (connection->monitor) {
removeMonitorChannelLocked(inputChannel);
}
mLooper->removeFd(inputChannel->getFd());
nsecs_t currentTime = now();
abortBrokenDispatchCycleLocked(currentTime, connection, notify);
connection->status = Connection::STATUS_ZOMBIE;
return OK;
}
void InputDispatcher::removeMonitorChannelLocked(const sp<InputChannel>& inputChannel) {
for (size_t i = 0; i < mMonitoringChannels.size(); i++) {
if (mMonitoringChannels[i] == inputChannel) {
mMonitoringChannels.removeAt(i);
break;
}
}
}
ssize_t InputDispatcher::getConnectionIndexLocked(const sp<InputChannel>& inputChannel) {
ssize_t connectionIndex = mConnectionsByFd.indexOfKey(inputChannel->getFd());
if (connectionIndex >= 0) {
sp<Connection> connection = mConnectionsByFd.valueAt(connectionIndex);
if (connection->inputChannel.get() == inputChannel.get()) {
return connectionIndex;
}
}
return -1;
}
void InputDispatcher::onDispatchCycleFinishedLocked(
nsecs_t currentTime, const sp<Connection>& connection, uint32_t seq, bool handled) {
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doDispatchCycleFinishedLockedInterruptible);
commandEntry->connection = connection;
commandEntry->eventTime = currentTime;
commandEntry->seq = seq;
commandEntry->handled = handled;
}
void InputDispatcher::onDispatchCycleBrokenLocked(
nsecs_t currentTime, const sp<Connection>& connection) {
ALOGE("channel '%s' ~ Channel is unrecoverably broken and will be disposed!",
connection->getInputChannelName());
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible);
commandEntry->connection = connection;
}
void InputDispatcher::onANRLocked(
nsecs_t currentTime, const sp<InputApplicationHandle>& applicationHandle,
const sp<InputWindowHandle>& windowHandle,
nsecs_t eventTime, nsecs_t waitStartTime, const char* reason) {
float dispatchLatency = (currentTime - eventTime) * 0.000001f;
float waitDuration = (currentTime - waitStartTime) * 0.000001f;
ALOGI("Application is not responding: %s. "
"It has been %0.1fms since event, %0.1fms since wait started. Reason: %s",
getApplicationWindowLabelLocked(applicationHandle, windowHandle).string(),
dispatchLatency, waitDuration, reason);
// Capture a record of the InputDispatcher state at the time of the ANR.
time_t t = time(NULL);
struct tm tm;
localtime_r(&t, &tm);
char timestr[64];
strftime(timestr, sizeof(timestr), "%F %T", &tm);
mLastANRState.clear();
mLastANRState.append(INDENT "ANR:\n");
mLastANRState.appendFormat(INDENT2 "Time: %s\n", timestr);
mLastANRState.appendFormat(INDENT2 "Window: %s\n",
getApplicationWindowLabelLocked(applicationHandle, windowHandle).string());
mLastANRState.appendFormat(INDENT2 "DispatchLatency: %0.1fms\n", dispatchLatency);
mLastANRState.appendFormat(INDENT2 "WaitDuration: %0.1fms\n", waitDuration);
mLastANRState.appendFormat(INDENT2 "Reason: %s\n", reason);
dumpDispatchStateLocked(mLastANRState);
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doNotifyANRLockedInterruptible);
commandEntry->inputApplicationHandle = applicationHandle;
commandEntry->inputWindowHandle = windowHandle;
commandEntry->reason = reason;
}
void InputDispatcher::doNotifyConfigurationChangedInterruptible(
CommandEntry* commandEntry) {
mLock.unlock();
mPolicy->notifyConfigurationChanged(commandEntry->eventTime);
mLock.lock();
}
void InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible(
CommandEntry* commandEntry) {
sp<Connection> connection = commandEntry->connection;
if (connection->status != Connection::STATUS_ZOMBIE) {
mLock.unlock();
mPolicy->notifyInputChannelBroken(connection->inputWindowHandle);
mLock.lock();
}
}
void InputDispatcher::doNotifyANRLockedInterruptible(
CommandEntry* commandEntry) {
mLock.unlock();
nsecs_t newTimeout = mPolicy->notifyANR(
commandEntry->inputApplicationHandle, commandEntry->inputWindowHandle,
commandEntry->reason);
mLock.lock();
resumeAfterTargetsNotReadyTimeoutLocked(newTimeout,
commandEntry->inputWindowHandle != NULL
? commandEntry->inputWindowHandle->getInputChannel() : NULL);
}
void InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible(
CommandEntry* commandEntry) {
KeyEntry* entry = commandEntry->keyEntry;
KeyEvent event;
initializeKeyEvent(&event, entry);
mLock.unlock();
nsecs_t delay = mPolicy->interceptKeyBeforeDispatching(commandEntry->inputWindowHandle,
&event, entry->policyFlags);
mLock.lock();
if (delay < 0) {
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_SKIP;
} else if (!delay) {
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE;
} else {
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_TRY_AGAIN_LATER;
entry->interceptKeyWakeupTime = now() + delay;
}
entry->release();
}
void InputDispatcher::doDispatchCycleFinishedLockedInterruptible(
CommandEntry* commandEntry) {
sp<Connection> connection = commandEntry->connection;
nsecs_t finishTime = commandEntry->eventTime;
uint32_t seq = commandEntry->seq;
bool handled = commandEntry->handled;
// Handle post-event policy actions.
DispatchEntry* dispatchEntry = connection->findWaitQueueEntry(seq);
if (dispatchEntry) {
nsecs_t eventDuration = finishTime - dispatchEntry->deliveryTime;
if (eventDuration > SLOW_EVENT_PROCESSING_WARNING_TIMEOUT) {
String8 msg;
msg.appendFormat("Window '%s' spent %0.1fms processing the last input event: ",
connection->getWindowName(), eventDuration * 0.000001f);
dispatchEntry->eventEntry->appendDescription(msg);
ALOGI("%s", msg.string());
}
bool restartEvent;
if (dispatchEntry->eventEntry->type == EventEntry::TYPE_KEY) {
KeyEntry* keyEntry = static_cast<KeyEntry*>(dispatchEntry->eventEntry);
restartEvent = afterKeyEventLockedInterruptible(connection,
dispatchEntry, keyEntry, handled);
} else if (dispatchEntry->eventEntry->type == EventEntry::TYPE_MOTION) {
MotionEntry* motionEntry = static_cast<MotionEntry*>(dispatchEntry->eventEntry);
restartEvent = afterMotionEventLockedInterruptible(connection,
dispatchEntry, motionEntry, handled);
} else {
restartEvent = false;
}
// Dequeue the event and start the next cycle.
// Note that because the lock might have been released, it is possible that the
// contents of the wait queue to have been drained, so we need to double-check
// a few things.
if (dispatchEntry == connection->findWaitQueueEntry(seq)) {
connection->waitQueue.dequeue(dispatchEntry);
traceWaitQueueLengthLocked(connection);
if (restartEvent && connection->status == Connection::STATUS_NORMAL) {
connection->outboundQueue.enqueueAtHead(dispatchEntry);
traceOutboundQueueLengthLocked(connection);
} else {
releaseDispatchEntryLocked(dispatchEntry);
}
}
// Start the next dispatch cycle for this connection.
startDispatchCycleLocked(now(), connection);
}
}
bool InputDispatcher::afterKeyEventLockedInterruptible(const sp<Connection>& connection,
DispatchEntry* dispatchEntry, KeyEntry* keyEntry, bool handled) {
if (!(keyEntry->flags & AKEY_EVENT_FLAG_FALLBACK)) {
// Get the fallback key state.
// Clear it out after dispatching the UP.
int32_t originalKeyCode = keyEntry->keyCode;
int32_t fallbackKeyCode = connection->inputState.getFallbackKey(originalKeyCode);
if (keyEntry->action == AKEY_EVENT_ACTION_UP) {
connection->inputState.removeFallbackKey(originalKeyCode);
}
if (handled || !dispatchEntry->hasForegroundTarget()) {
// If the application handles the original key for which we previously
// generated a fallback or if the window is not a foreground window,
// then cancel the associated fallback key, if any.
if (fallbackKeyCode != -1) {
// Dispatch the unhandled key to the policy with the cancel flag.
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("Unhandled key event: Asking policy to cancel fallback action. "
"keyCode=%d, action=%d, repeatCount=%d, policyFlags=0x%08x",
keyEntry->keyCode, keyEntry->action, keyEntry->repeatCount,
keyEntry->policyFlags);
#endif
KeyEvent event;
initializeKeyEvent(&event, keyEntry);
event.setFlags(event.getFlags() | AKEY_EVENT_FLAG_CANCELED);
mLock.unlock();
mPolicy->dispatchUnhandledKey(connection->inputWindowHandle,
&event, keyEntry->policyFlags, &event);
mLock.lock();
// Cancel the fallback key.
if (fallbackKeyCode != AKEYCODE_UNKNOWN) {
CancelationOptions options(CancelationOptions::CANCEL_FALLBACK_EVENTS,
"application handled the original non-fallback key "
"or is no longer a foreground target, "
"canceling previously dispatched fallback key");
options.keyCode = fallbackKeyCode;
synthesizeCancelationEventsForConnectionLocked(connection, options);
}
connection->inputState.removeFallbackKey(originalKeyCode);
}
} else {
// If the application did not handle a non-fallback key, first check
// that we are in a good state to perform unhandled key event processing
// Then ask the policy what to do with it.
bool initialDown = keyEntry->action == AKEY_EVENT_ACTION_DOWN
&& keyEntry->repeatCount == 0;
if (fallbackKeyCode == -1 && !initialDown) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("Unhandled key event: Skipping unhandled key event processing "
"since this is not an initial down. "
"keyCode=%d, action=%d, repeatCount=%d, policyFlags=0x%08x",
originalKeyCode, keyEntry->action, keyEntry->repeatCount,
keyEntry->policyFlags);
#endif
return false;
}
// Dispatch the unhandled key to the policy.
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("Unhandled key event: Asking policy to perform fallback action. "
"keyCode=%d, action=%d, repeatCount=%d, policyFlags=0x%08x",
keyEntry->keyCode, keyEntry->action, keyEntry->repeatCount,
keyEntry->policyFlags);
#endif
KeyEvent event;
initializeKeyEvent(&event, keyEntry);
mLock.unlock();
bool fallback = mPolicy->dispatchUnhandledKey(connection->inputWindowHandle,
&event, keyEntry->policyFlags, &event);
mLock.lock();
if (connection->status != Connection::STATUS_NORMAL) {
connection->inputState.removeFallbackKey(originalKeyCode);
return false;
}
// Latch the fallback keycode for this key on an initial down.
// The fallback keycode cannot change at any other point in the lifecycle.
if (initialDown) {
if (fallback) {
fallbackKeyCode = event.getKeyCode();
} else {
fallbackKeyCode = AKEYCODE_UNKNOWN;
}
connection->inputState.setFallbackKey(originalKeyCode, fallbackKeyCode);
}
ALOG_ASSERT(fallbackKeyCode != -1);
// Cancel the fallback key if the policy decides not to send it anymore.
// We will continue to dispatch the key to the policy but we will no
// longer dispatch a fallback key to the application.
if (fallbackKeyCode != AKEYCODE_UNKNOWN
&& (!fallback || fallbackKeyCode != event.getKeyCode())) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
if (fallback) {
ALOGD("Unhandled key event: Policy requested to send key %d"
"as a fallback for %d, but on the DOWN it had requested "
"to send %d instead. Fallback canceled.",
event.getKeyCode(), originalKeyCode, fallbackKeyCode);
} else {
ALOGD("Unhandled key event: Policy did not request fallback for %d, "
"but on the DOWN it had requested to send %d. "
"Fallback canceled.",
originalKeyCode, fallbackKeyCode);
}
#endif
CancelationOptions options(CancelationOptions::CANCEL_FALLBACK_EVENTS,
"canceling fallback, policy no longer desires it");
options.keyCode = fallbackKeyCode;
synthesizeCancelationEventsForConnectionLocked(connection, options);
fallback = false;
fallbackKeyCode = AKEYCODE_UNKNOWN;
if (keyEntry->action != AKEY_EVENT_ACTION_UP) {
connection->inputState.setFallbackKey(originalKeyCode,
fallbackKeyCode);
}
}
#if DEBUG_OUTBOUND_EVENT_DETAILS
{
String8 msg;
const KeyedVector<int32_t, int32_t>& fallbackKeys =
connection->inputState.getFallbackKeys();
for (size_t i = 0; i < fallbackKeys.size(); i++) {
msg.appendFormat(", %d->%d", fallbackKeys.keyAt(i),
fallbackKeys.valueAt(i));
}
ALOGD("Unhandled key event: %d currently tracked fallback keys%s.",
fallbackKeys.size(), msg.string());
}
#endif
if (fallback) {
// Restart the dispatch cycle using the fallback key.
keyEntry->eventTime = event.getEventTime();
keyEntry->deviceId = event.getDeviceId();
keyEntry->source = event.getSource();
keyEntry->flags = event.getFlags() | AKEY_EVENT_FLAG_FALLBACK;
keyEntry->keyCode = fallbackKeyCode;
keyEntry->scanCode = event.getScanCode();
keyEntry->metaState = event.getMetaState();
keyEntry->repeatCount = event.getRepeatCount();
keyEntry->downTime = event.getDownTime();
keyEntry->syntheticRepeat = false;
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("Unhandled key event: Dispatching fallback key. "
"originalKeyCode=%d, fallbackKeyCode=%d, fallbackMetaState=%08x",
originalKeyCode, fallbackKeyCode, keyEntry->metaState);
#endif
return true; // restart the event
} else {
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("Unhandled key event: No fallback key.");
#endif
}
}
}
return false;
}
bool InputDispatcher::afterMotionEventLockedInterruptible(const sp<Connection>& connection,
DispatchEntry* dispatchEntry, MotionEntry* motionEntry, bool handled) {
return false;
}
void InputDispatcher::doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry) {
mLock.unlock();
mPolicy->pokeUserActivity(commandEntry->eventTime, commandEntry->userActivityEventType);
mLock.lock();
}
void InputDispatcher::initializeKeyEvent(KeyEvent* event, const KeyEntry* entry) {
event->initialize(entry->deviceId, entry->source, entry->action, entry->flags,
entry->keyCode, entry->scanCode, entry->metaState, entry->repeatCount,
entry->downTime, entry->eventTime);
}
void InputDispatcher::updateDispatchStatisticsLocked(nsecs_t currentTime, const EventEntry* entry,
int32_t injectionResult, nsecs_t timeSpentWaitingForApplication) {
// TODO Write some statistics about how long we spend waiting.
}
void InputDispatcher::traceInboundQueueLengthLocked() {
if (ATRACE_ENABLED()) {
ATRACE_INT("iq", mInboundQueue.count());
}
}
void InputDispatcher::traceOutboundQueueLengthLocked(const sp<Connection>& connection) {
if (ATRACE_ENABLED()) {
char counterName[40];
snprintf(counterName, sizeof(counterName), "oq:%s", connection->getWindowName());
ATRACE_INT(counterName, connection->outboundQueue.count());
}
}
void InputDispatcher::traceWaitQueueLengthLocked(const sp<Connection>& connection) {
if (ATRACE_ENABLED()) {
char counterName[40];
snprintf(counterName, sizeof(counterName), "wq:%s", connection->getWindowName());
ATRACE_INT(counterName, connection->waitQueue.count());
}
}
void InputDispatcher::dump(String8& dump) {
AutoMutex _l(mLock);
dump.append("Input Dispatcher State:\n");
dumpDispatchStateLocked(dump);
if (!mLastANRState.isEmpty()) {
dump.append("\nInput Dispatcher State at time of last ANR:\n");
dump.append(mLastANRState);
}
}
void InputDispatcher::monitor() {
// Acquire and release the lock to ensure that the dispatcher has not deadlocked.
mLock.lock();
mLooper->wake();
mDispatcherIsAliveCondition.wait(mLock);
mLock.unlock();
}
// --- InputDispatcher::Queue ---
template <typename T>
uint32_t InputDispatcher::Queue<T>::count() const {
uint32_t result = 0;
for (const T* entry = head; entry; entry = entry->next) {
result += 1;
}
return result;
}
// --- InputDispatcher::InjectionState ---
InputDispatcher::InjectionState::InjectionState(int32_t injectorPid, int32_t injectorUid) :
refCount(1),
injectorPid(injectorPid), injectorUid(injectorUid),
injectionResult(INPUT_EVENT_INJECTION_PENDING), injectionIsAsync(false),
pendingForegroundDispatches(0) {
}
InputDispatcher::InjectionState::~InjectionState() {
}
void InputDispatcher::InjectionState::release() {
refCount -= 1;
if (refCount == 0) {
delete this;
} else {
ALOG_ASSERT(refCount > 0);
}
}
// --- InputDispatcher::EventEntry ---
InputDispatcher::EventEntry::EventEntry(int32_t type, nsecs_t eventTime, uint32_t policyFlags) :
refCount(1), type(type), eventTime(eventTime), policyFlags(policyFlags),
injectionState(NULL), dispatchInProgress(false) {
}
InputDispatcher::EventEntry::~EventEntry() {
releaseInjectionState();
}
void InputDispatcher::EventEntry::release() {
refCount -= 1;
if (refCount == 0) {
delete this;
} else {
ALOG_ASSERT(refCount > 0);
}
}
void InputDispatcher::EventEntry::releaseInjectionState() {
if (injectionState) {
injectionState->release();
injectionState = NULL;
}
}
// --- InputDispatcher::ConfigurationChangedEntry ---
InputDispatcher::ConfigurationChangedEntry::ConfigurationChangedEntry(nsecs_t eventTime) :
EventEntry(TYPE_CONFIGURATION_CHANGED, eventTime, 0) {
}
InputDispatcher::ConfigurationChangedEntry::~ConfigurationChangedEntry() {
}
void InputDispatcher::ConfigurationChangedEntry::appendDescription(String8& msg) const {
msg.append("ConfigurationChangedEvent(), policyFlags=0x%08x",
policyFlags);
}
// --- InputDispatcher::DeviceResetEntry ---
InputDispatcher::DeviceResetEntry::DeviceResetEntry(nsecs_t eventTime, int32_t deviceId) :
EventEntry(TYPE_DEVICE_RESET, eventTime, 0),
deviceId(deviceId) {
}
InputDispatcher::DeviceResetEntry::~DeviceResetEntry() {
}
void InputDispatcher::DeviceResetEntry::appendDescription(String8& msg) const {
msg.appendFormat("DeviceResetEvent(deviceId=%d), policyFlags=0x%08x",
deviceId, policyFlags);
}
// --- InputDispatcher::KeyEntry ---
InputDispatcher::KeyEntry::KeyEntry(nsecs_t eventTime,
int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action,
int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState,
int32_t repeatCount, nsecs_t downTime) :
EventEntry(TYPE_KEY, eventTime, policyFlags),
deviceId(deviceId), source(source), action(action), flags(flags),
keyCode(keyCode), scanCode(scanCode), metaState(metaState),
repeatCount(repeatCount), downTime(downTime),
syntheticRepeat(false), interceptKeyResult(KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN),
interceptKeyWakeupTime(0) {
}
InputDispatcher::KeyEntry::~KeyEntry() {
}
void InputDispatcher::KeyEntry::appendDescription(String8& msg) const {
msg.appendFormat("KeyEvent(deviceId=%d, source=0x%08x, action=%d, "
"flags=0x%08x, keyCode=%d, scanCode=%d, metaState=0x%08x, "
"repeatCount=%d), policyFlags=0x%08x",
deviceId, source, action, flags, keyCode, scanCode, metaState,
repeatCount, policyFlags);
}
void InputDispatcher::KeyEntry::recycle() {
releaseInjectionState();
dispatchInProgress = false;
syntheticRepeat = false;
interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN;
interceptKeyWakeupTime = 0;
}
// --- InputDispatcher::MotionEntry ---
InputDispatcher::MotionEntry::MotionEntry(nsecs_t eventTime,
int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action, int32_t flags,
int32_t metaState, int32_t buttonState,
int32_t edgeFlags, float xPrecision, float yPrecision,
nsecs_t downTime, int32_t displayId, uint32_t pointerCount,
const PointerProperties* pointerProperties, const PointerCoords* pointerCoords,
float xOffset, float yOffset) :
EventEntry(TYPE_MOTION, eventTime, policyFlags),
eventTime(eventTime),
deviceId(deviceId), source(source), action(action), flags(flags),
metaState(metaState), buttonState(buttonState), edgeFlags(edgeFlags),
xPrecision(xPrecision), yPrecision(yPrecision),
downTime(downTime), displayId(displayId), pointerCount(pointerCount) {
for (uint32_t i = 0; i < pointerCount; i++) {
this->pointerProperties[i].copyFrom(pointerProperties[i]);
this->pointerCoords[i].copyFrom(pointerCoords[i]);
if (xOffset || yOffset) {
this->pointerCoords[i].applyOffset(xOffset, yOffset);
}
}
}
InputDispatcher::MotionEntry::~MotionEntry() {
}
void InputDispatcher::MotionEntry::appendDescription(String8& msg) const {
msg.appendFormat("MotionEvent(deviceId=%d, source=0x%08x, action=%d, "
"flags=0x%08x, metaState=0x%08x, buttonState=0x%08x, edgeFlags=0x%08x, "
"xPrecision=%.1f, yPrecision=%.1f, displayId=%d, pointers=[",
deviceId, source, action, flags, metaState, buttonState, edgeFlags,
xPrecision, yPrecision, displayId);
for (uint32_t i = 0; i < pointerCount; i++) {
if (i) {
msg.append(", ");
}
msg.appendFormat("%d: (%.1f, %.1f)", pointerProperties[i].id,
pointerCoords[i].getX(), pointerCoords[i].getY());
}
msg.appendFormat("]), policyFlags=0x%08x", policyFlags);
}
// --- InputDispatcher::DispatchEntry ---
volatile int32_t InputDispatcher::DispatchEntry::sNextSeqAtomic;
InputDispatcher::DispatchEntry::DispatchEntry(EventEntry* eventEntry,
int32_t targetFlags, float xOffset, float yOffset, float scaleFactor) :
seq(nextSeq()),
eventEntry(eventEntry), targetFlags(targetFlags),
xOffset(xOffset), yOffset(yOffset), scaleFactor(scaleFactor),
deliveryTime(0), resolvedAction(0), resolvedFlags(0) {
eventEntry->refCount += 1;
}
InputDispatcher::DispatchEntry::~DispatchEntry() {
eventEntry->release();
}
uint32_t InputDispatcher::DispatchEntry::nextSeq() {
// Sequence number 0 is reserved and will never be returned.
uint32_t seq;
do {
seq = android_atomic_inc(&sNextSeqAtomic);
} while (!seq);
return seq;
}
// --- InputDispatcher::InputState ---
InputDispatcher::InputState::InputState() {
}
InputDispatcher::InputState::~InputState() {
}
bool InputDispatcher::InputState::isNeutral() const {
return mKeyMementos.isEmpty() && mMotionMementos.isEmpty();
}
bool InputDispatcher::InputState::isHovering(int32_t deviceId, uint32_t source,
int32_t displayId) const {
for (size_t i = 0; i < mMotionMementos.size(); i++) {
const MotionMemento& memento = mMotionMementos.itemAt(i);
if (memento.deviceId == deviceId
&& memento.source == source
&& memento.displayId == displayId
&& memento.hovering) {
return true;
}
}
return false;
}
bool InputDispatcher::InputState::trackKey(const KeyEntry* entry,
int32_t action, int32_t flags) {
switch (action) {
case AKEY_EVENT_ACTION_UP: {
if (entry->flags & AKEY_EVENT_FLAG_FALLBACK) {
for (size_t i = 0; i < mFallbackKeys.size(); ) {
if (mFallbackKeys.valueAt(i) == entry->keyCode) {
mFallbackKeys.removeItemsAt(i);
} else {
i += 1;
}
}
}
ssize_t index = findKeyMemento(entry);
if (index >= 0) {
mKeyMementos.removeAt(index);
return true;
}
/* FIXME: We can't just drop the key up event because that prevents creating
* popup windows that are automatically shown when a key is held and then
* dismissed when the key is released. The problem is that the popup will
* not have received the original key down, so the key up will be considered
* to be inconsistent with its observed state. We could perhaps handle this
* by synthesizing a key down but that will cause other problems.
*
* So for now, allow inconsistent key up events to be dispatched.
*
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("Dropping inconsistent key up event: deviceId=%d, source=%08x, "
"keyCode=%d, scanCode=%d",
entry->deviceId, entry->source, entry->keyCode, entry->scanCode);
#endif
return false;
*/
return true;
}
case AKEY_EVENT_ACTION_DOWN: {
ssize_t index = findKeyMemento(entry);
if (index >= 0) {
mKeyMementos.removeAt(index);
}
addKeyMemento(entry, flags);
return true;
}
default:
return true;
}
}
bool InputDispatcher::InputState::trackMotion(const MotionEntry* entry,
int32_t action, int32_t flags) {
int32_t actionMasked = action & AMOTION_EVENT_ACTION_MASK;
switch (actionMasked) {
case AMOTION_EVENT_ACTION_UP:
case AMOTION_EVENT_ACTION_CANCEL: {
ssize_t index = findMotionMemento(entry, false /*hovering*/);
if (index >= 0) {
mMotionMementos.removeAt(index);
return true;
}
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("Dropping inconsistent motion up or cancel event: deviceId=%d, source=%08x, "
"actionMasked=%d",
entry->deviceId, entry->source, actionMasked);
#endif
return false;
}
case AMOTION_EVENT_ACTION_DOWN: {
ssize_t index = findMotionMemento(entry, false /*hovering*/);
if (index >= 0) {
mMotionMementos.removeAt(index);
}
addMotionMemento(entry, flags, false /*hovering*/);
return true;
}
case AMOTION_EVENT_ACTION_POINTER_UP:
case AMOTION_EVENT_ACTION_POINTER_DOWN:
case AMOTION_EVENT_ACTION_MOVE: {
if (entry->source & AINPUT_SOURCE_CLASS_NAVIGATION) {
// Trackballs can send MOVE events with a corresponding DOWN or UP. There's no need to
// generate cancellation events for these since they're based in relative rather than
// absolute units.
return true;
}
ssize_t index = findMotionMemento(entry, false /*hovering*/);
if (entry->source & AINPUT_SOURCE_CLASS_JOYSTICK) {
// Joysticks can send MOVE events without a corresponding DOWN or UP. Since all
// joystick axes are normalized to [-1, 1] we can trust that 0 means it's neutral. Any
// other value and we need to track the motion so we can send cancellation events for
// anything generating fallback events (e.g. DPad keys for joystick movements).
if (index >= 0) {
if (entry->pointerCoords[0].isEmpty()) {
mMotionMementos.removeAt(index);
} else {
MotionMemento& memento = mMotionMementos.editItemAt(index);
memento.setPointers(entry);
}
} else if (!entry->pointerCoords[0].isEmpty()) {
addMotionMemento(entry, flags, false /*hovering*/);
}
// Joysticks and trackballs can send MOVE events without corresponding DOWN or UP.
return true;
}
if (index >= 0) {
MotionMemento& memento = mMotionMementos.editItemAt(index);
memento.setPointers(entry);
return true;
}
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("Dropping inconsistent motion pointer up/down or move event: "
"deviceId=%d, source=%08x, actionMasked=%d",
entry->deviceId, entry->source, actionMasked);
#endif
return false;
}
case AMOTION_EVENT_ACTION_HOVER_EXIT: {
ssize_t index = findMotionMemento(entry, true /*hovering*/);
if (index >= 0) {
mMotionMementos.removeAt(index);
return true;
}
#if DEBUG_OUTBOUND_EVENT_DETAILS
ALOGD("Dropping inconsistent motion hover exit event: deviceId=%d, source=%08x",
entry->deviceId, entry->source);
#endif
return false;
}
case AMOTION_EVENT_ACTION_HOVER_ENTER:
case AMOTION_EVENT_ACTION_HOVER_MOVE: {
ssize_t index = findMotionMemento(entry, true /*hovering*/);
if (index >= 0) {
mMotionMementos.removeAt(index);
}
addMotionMemento(entry, flags, true /*hovering*/);
return true;
}
default:
return true;
}
}
ssize_t InputDispatcher::InputState::findKeyMemento(const KeyEntry* entry) const {
for (size_t i = 0; i < mKeyMementos.size(); i++) {
const KeyMemento& memento = mKeyMementos.itemAt(i);
if (memento.deviceId == entry->deviceId
&& memento.source == entry->source
&& memento.keyCode == entry->keyCode
&& memento.scanCode == entry->scanCode) {
return i;
}
}
return -1;
}
ssize_t InputDispatcher::InputState::findMotionMemento(const MotionEntry* entry,
bool hovering) const {
for (size_t i = 0; i < mMotionMementos.size(); i++) {
const MotionMemento& memento = mMotionMementos.itemAt(i);
if (memento.deviceId == entry->deviceId
&& memento.source == entry->source
&& memento.displayId == entry->displayId
&& memento.hovering == hovering) {
return i;
}
}
return -1;
}
void InputDispatcher::InputState::addKeyMemento(const KeyEntry* entry, int32_t flags) {
mKeyMementos.push();
KeyMemento& memento = mKeyMementos.editTop();
memento.deviceId = entry->deviceId;
memento.source = entry->source;
memento.keyCode = entry->keyCode;
memento.scanCode = entry->scanCode;
memento.metaState = entry->metaState;
memento.flags = flags;
memento.downTime = entry->downTime;
memento.policyFlags = entry->policyFlags;
}
void InputDispatcher::InputState::addMotionMemento(const MotionEntry* entry,
int32_t flags, bool hovering) {
mMotionMementos.push();
MotionMemento& memento = mMotionMementos.editTop();
memento.deviceId = entry->deviceId;
memento.source = entry->source;
memento.flags = flags;
memento.xPrecision = entry->xPrecision;
memento.yPrecision = entry->yPrecision;
memento.downTime = entry->downTime;
memento.displayId = entry->displayId;
memento.setPointers(entry);
memento.hovering = hovering;
memento.policyFlags = entry->policyFlags;
}
void InputDispatcher::InputState::MotionMemento::setPointers(const MotionEntry* entry) {
pointerCount = entry->pointerCount;
for (uint32_t i = 0; i < entry->pointerCount; i++) {
pointerProperties[i].copyFrom(entry->pointerProperties[i]);
pointerCoords[i].copyFrom(entry->pointerCoords[i]);
}
}
void InputDispatcher::InputState::synthesizeCancelationEvents(nsecs_t currentTime,
Vector<EventEntry*>& outEvents, const CancelationOptions& options) {
for (size_t i = 0; i < mKeyMementos.size(); i++) {
const KeyMemento& memento = mKeyMementos.itemAt(i);
if (shouldCancelKey(memento, options)) {
outEvents.push(new KeyEntry(currentTime,
memento.deviceId, memento.source, memento.policyFlags,
AKEY_EVENT_ACTION_UP, memento.flags | AKEY_EVENT_FLAG_CANCELED,
memento.keyCode, memento.scanCode, memento.metaState, 0, memento.downTime));
}
}
for (size_t i = 0; i < mMotionMementos.size(); i++) {
const MotionMemento& memento = mMotionMementos.itemAt(i);
if (shouldCancelMotion(memento, options)) {
outEvents.push(new MotionEntry(currentTime,
memento.deviceId, memento.source, memento.policyFlags,
memento.hovering
? AMOTION_EVENT_ACTION_HOVER_EXIT
: AMOTION_EVENT_ACTION_CANCEL,
memento.flags, 0, 0, 0,
memento.xPrecision, memento.yPrecision, memento.downTime,
memento.displayId,
memento.pointerCount, memento.pointerProperties, memento.pointerCoords,
0, 0));
}
}
}
void InputDispatcher::InputState::clear() {
mKeyMementos.clear();
mMotionMementos.clear();
mFallbackKeys.clear();
}
void InputDispatcher::InputState::copyPointerStateTo(InputState& other) const {
for (size_t i = 0; i < mMotionMementos.size(); i++) {
const MotionMemento& memento = mMotionMementos.itemAt(i);
if (memento.source & AINPUT_SOURCE_CLASS_POINTER) {
for (size_t j = 0; j < other.mMotionMementos.size(); ) {
const MotionMemento& otherMemento = other.mMotionMementos.itemAt(j);
if (memento.deviceId == otherMemento.deviceId
&& memento.source == otherMemento.source
&& memento.displayId == otherMemento.displayId) {
other.mMotionMementos.removeAt(j);
} else {
j += 1;
}
}
other.mMotionMementos.push(memento);
}
}
}
int32_t InputDispatcher::InputState::getFallbackKey(int32_t originalKeyCode) {
ssize_t index = mFallbackKeys.indexOfKey(originalKeyCode);
return index >= 0 ? mFallbackKeys.valueAt(index) : -1;
}
void InputDispatcher::InputState::setFallbackKey(int32_t originalKeyCode,
int32_t fallbackKeyCode) {
ssize_t index = mFallbackKeys.indexOfKey(originalKeyCode);
if (index >= 0) {
mFallbackKeys.replaceValueAt(index, fallbackKeyCode);
} else {
mFallbackKeys.add(originalKeyCode, fallbackKeyCode);
}
}
void InputDispatcher::InputState::removeFallbackKey(int32_t originalKeyCode) {
mFallbackKeys.removeItem(originalKeyCode);
}
bool InputDispatcher::InputState::shouldCancelKey(const KeyMemento& memento,
const CancelationOptions& options) {
if (options.keyCode != -1 && memento.keyCode != options.keyCode) {
return false;
}
if (options.deviceId != -1 && memento.deviceId != options.deviceId) {
return false;
}
switch (options.mode) {
case CancelationOptions::CANCEL_ALL_EVENTS:
case CancelationOptions::CANCEL_NON_POINTER_EVENTS:
return true;
case CancelationOptions::CANCEL_FALLBACK_EVENTS:
return memento.flags & AKEY_EVENT_FLAG_FALLBACK;
default:
return false;
}
}
bool InputDispatcher::InputState::shouldCancelMotion(const MotionMemento& memento,
const CancelationOptions& options) {
if (options.deviceId != -1 && memento.deviceId != options.deviceId) {
return false;
}
switch (options.mode) {
case CancelationOptions::CANCEL_ALL_EVENTS:
return true;
case CancelationOptions::CANCEL_POINTER_EVENTS:
return memento.source & AINPUT_SOURCE_CLASS_POINTER;
case CancelationOptions::CANCEL_NON_POINTER_EVENTS:
return !(memento.source & AINPUT_SOURCE_CLASS_POINTER);
default:
return false;
}
}
// --- InputDispatcher::Connection ---
InputDispatcher::Connection::Connection(const sp<InputChannel>& inputChannel,
const sp<InputWindowHandle>& inputWindowHandle, bool monitor) :
status(STATUS_NORMAL), inputChannel(inputChannel), inputWindowHandle(inputWindowHandle),
monitor(monitor),
inputPublisher(inputChannel), inputPublisherBlocked(false) {
}
InputDispatcher::Connection::~Connection() {
}
const char* InputDispatcher::Connection::getWindowName() const {
if (inputWindowHandle != NULL) {
return inputWindowHandle->getName().string();
}
if (monitor) {
return "monitor";
}
return "?";
}
const char* InputDispatcher::Connection::getStatusLabel() const {
switch (status) {
case STATUS_NORMAL:
return "NORMAL";
case STATUS_BROKEN:
return "BROKEN";
case STATUS_ZOMBIE:
return "ZOMBIE";
default:
return "UNKNOWN";
}
}
InputDispatcher::DispatchEntry* InputDispatcher::Connection::findWaitQueueEntry(uint32_t seq) {
for (DispatchEntry* entry = waitQueue.head; entry != NULL; entry = entry->next) {
if (entry->seq == seq) {
return entry;
}
}
return NULL;
}
// --- InputDispatcher::CommandEntry ---
InputDispatcher::CommandEntry::CommandEntry(Command command) :
command(command), eventTime(0), keyEntry(NULL), userActivityEventType(0),
seq(0), handled(false) {
}
InputDispatcher::CommandEntry::~CommandEntry() {
}
// --- InputDispatcher::TouchState ---
InputDispatcher::TouchState::TouchState() :
down(false), split(false), deviceId(-1), source(0), displayId(-1) {
}
InputDispatcher::TouchState::~TouchState() {
}
void InputDispatcher::TouchState::reset() {
down = false;
split = false;
deviceId = -1;
source = 0;
displayId = -1;
windows.clear();
}
void InputDispatcher::TouchState::copyFrom(const TouchState& other) {
down = other.down;
split = other.split;
deviceId = other.deviceId;
source = other.source;
displayId = other.displayId;
windows = other.windows;
}
void InputDispatcher::TouchState::addOrUpdateWindow(const sp<InputWindowHandle>& windowHandle,
int32_t targetFlags, BitSet32 pointerIds) {
if (targetFlags & InputTarget::FLAG_SPLIT) {
split = true;
}
for (size_t i = 0; i < windows.size(); i++) {
TouchedWindow& touchedWindow = windows.editItemAt(i);
if (touchedWindow.windowHandle == windowHandle) {
touchedWindow.targetFlags |= targetFlags;
if (targetFlags & InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT) {
touchedWindow.targetFlags &= ~InputTarget::FLAG_DISPATCH_AS_IS;
}
touchedWindow.pointerIds.value |= pointerIds.value;
return;
}
}
windows.push();
TouchedWindow& touchedWindow = windows.editTop();
touchedWindow.windowHandle = windowHandle;
touchedWindow.targetFlags = targetFlags;
touchedWindow.pointerIds = pointerIds;
}
void InputDispatcher::TouchState::removeWindow(const sp<InputWindowHandle>& windowHandle) {
for (size_t i = 0; i < windows.size(); i++) {
if (windows.itemAt(i).windowHandle == windowHandle) {
windows.removeAt(i);
return;
}
}
}
void InputDispatcher::TouchState::filterNonAsIsTouchWindows() {
for (size_t i = 0 ; i < windows.size(); ) {
TouchedWindow& window = windows.editItemAt(i);
if (window.targetFlags & (InputTarget::FLAG_DISPATCH_AS_IS
| InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER)) {
window.targetFlags &= ~InputTarget::FLAG_DISPATCH_MASK;
window.targetFlags |= InputTarget::FLAG_DISPATCH_AS_IS;
i += 1;
} else {
windows.removeAt(i);
}
}
}
sp<InputWindowHandle> InputDispatcher::TouchState::getFirstForegroundWindowHandle() const {
for (size_t i = 0; i < windows.size(); i++) {
const TouchedWindow& window = windows.itemAt(i);
if (window.targetFlags & InputTarget::FLAG_FOREGROUND) {
return window.windowHandle;
}
}
return NULL;
}
bool InputDispatcher::TouchState::isSlippery() const {
// Must have exactly one foreground window.
bool haveSlipperyForegroundWindow = false;
for (size_t i = 0; i < windows.size(); i++) {
const TouchedWindow& window = windows.itemAt(i);
if (window.targetFlags & InputTarget::FLAG_FOREGROUND) {
if (haveSlipperyForegroundWindow
|| !(window.windowHandle->getInfo()->layoutParamsFlags
& InputWindowInfo::FLAG_SLIPPERY)) {
return false;
}
haveSlipperyForegroundWindow = true;
}
}
return haveSlipperyForegroundWindow;
}
// --- InputDispatcherThread ---
InputDispatcherThread::InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher) :
Thread(/*canCallJava*/ true), mDispatcher(dispatcher) {
}
InputDispatcherThread::~InputDispatcherThread() {
}
bool InputDispatcherThread::threadLoop() {
mDispatcher->dispatchOnce();
return true;
}
} // namespace android